Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2020R1I1A1A01066599), This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2021-2017-0-01630) supervised by the IITP(Institute for Information & communications Technology Promotion)
References
- Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.
- Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70-79. https://doi.org/10.1016/j.neucom.2017.11.077
- Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28. https://doi.org/10.1016/j.compeleceng.2013.11.024
- Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent data analysis, 1(1-4), 131-156. https://doi.org/10.3233/IDA-1997-1302
- Kira, K., & Rendell, L. A. (1992, July). The feature selection problem: Traditional methods and a new algorithm. In Aaai (Vol. 2, No. 1992a, pp. 129-134).
- Bousquet, O., Boucheron, S., & Lugosi, G. (2003, February). Introduction to statistical learning theory. In Summer school on machine learning (pp. 169-207). Springer, Berlin, Heidelberg.
- Bermingham, M. L., Pong-Wong, R., Spiliopoulou, A., Hayward, C., Rudan, I., Campbell, H., ... & Haley, C. S. (2015). Application of high-dimensional feature selection: evaluation for genomic prediction in man. Scientific reports, 5(1), 1-12. https://doi.org/10.9734/JSRR/2015/14076
- Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis and machine intelligence, 27(8), 1226-1238. https://doi.org/10.1109/TPAMI.2005.159
- Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the gini index and information gain criteria. Annals of Mathematics and Artificial Intelligence, 41(1), 77-93. https://doi.org/10.1023/B:AMAI.0000018580.96245.c6
- Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Machine learning proceedings 1992 (pp. 249-256). Morgan Kaufmann.
- Mirjalili, S. (2019). Genetic algorithm. In Evolutionary algorithms and neural networks (pp. 43-55). Springer, Cham.
- Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
- Asuncion, A., & Newman, D. (2007). UCI machine learning repository. Available: http://archive.ics.uci.edu/ml
- Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., & Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences, 96(12), 6745-6750. https://doi.org/10.1073/pnas.96.12.6745
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.