과제정보
This paper was supported by Kumoh National Institute of Technology Research Grant in 2020 (No.20200231001)
참고문헌
- S. Noh. (2021). A Analysis of Issues Related to Artificial Intelligence Based on Topic Modeling. Journal of Digital Convergence, 18(5), 75-87. DOI : doi.org/10.14400/JDC.2020.18.5.075
- J. Ki & S. Ahn. (2020) Application of Sentiment Analysis and Topic Modeling on Rural Solar PV Issues: Comparison of News Articles and Blog Posts. Journal of Digital Convergence, 18(9), 17-27. DOI : doi.org/10.14400/JDC.2020.18.9.017
- S. S. Lee, I. Yoo & J. Kim (2020). An analysis of public perception on Artificial Intelligence(AI) education using Big Data: Based on News articles and Twitter. Journal of Digital Convergence, 18(6), 9-16. DOI : doi.org/10.14400/JDC.2020.8.6.009
- S. M. Kim. (2020). Analysis of Press Articles in Korean Media on Online Education related to COVID-19. Journal of Digital Contents Society, 21(6), 1091-1100. DOI: https://doi.org/10.9728/dcs.2020.21.6.1091
- S. M. Heo & J. Y. Yang. (2021). A Convergence Study on the Topic and Sentiment of COVID19 Research in Korea Using Text Analysis. Journal of the Korea Convergence Society, 12(4), 31-42. DOI : dx.doi.org/10.15207/JKCS.2021.12.4.031
- S. Yoon, S. Jung & Y. A. Kim. (2021). Trend Analysis of Corona Virus(COVID-19) based on Social Media, Journal of Korea Academia- Industrial cooperation Society, 22(5), 317-324. DOI : 10.5762/KAIS.2021.22.5.317
- I. S. Park. (2021). Analysis of press articles in Korean media on education policy of the Ministry of Education related to COVID-19. Teaching Practicum Research, 3(1), 10-21. http://www.riss.kr/link?id=A107781888
- S. M. Kim. (2020). Analysis of Press Articles in Korean Media on Online Education related to COVID-19. Journal of Digital Contents Society, 21(6), 1091-1100. DOI: https://doi.org/10.9728/dcs.2020.21.6.1091
- J. Kim, H. S. Na & K. H. Park. (2021). Topic Modeling of Profit Adjustment Research Trend in Korean Accounting. Journal of Digital Convergence, 19(1), 125-139. DOI : doi.org/10.14400/JDC.2021.19.1.125
- S. M. Kim & Y. J. Kim. (2020). Research Trend Analysis on Living Lab Using Text Mining. Journal of Digital Convergence, 18(8), 37-48. DOI : doi.org/10.14400/JDC.2020.18.8.037
- S. K. Park, H. J. Lee & B. G. Lee (2021) Exploring Social Issues of On-demand Delivery Platform Participants. Journal of Digital Convergence, 19(7), 79-85. DOI : doi.org/10.14400/JDC.2021.19.7.079
- S. M. Lee & S. G. Hong. (2020). Policy agenda proposals from text mining analysis of patents and news articles. Journal of Digital Convergence, 18(3), 1-12. DOI : doi.org/10.14400/JDC.2020.18.3.001
- M. J. Kim (2020). Analyzing the Trend of Wearable Keywordsusing Text-mining Methodology. Journal of Digital Convergence , 18(9), 181-190. DOI : doi.org/10.14400/JDC.2020.18.9.190
- M. S. Shon, M. J. Im & K. H. Park (2021). A Study on Consumer perception changes of online education before and after COVID-19 using text mining. Journal of Digital Convergence, 19(1), 29-43. DOI : doi.org/10.14400/JDC.2021.19.1.029
- BIG KINDS, News Bigdata & Analysis. Korea Press Foundation. https://www.bigkinds.or.kr
- D. M. Blei, A. Y. Ng & M. I. Jordan. (2003). Latent dirichlet allocation, The Journal of Machine Learning Research, 3, 993-1022. https://dl.acm.org/doi/10.5555/944919.944937
- S. M. Heo & J. Y. Yang. (2020). Analysis of Research Topics and Trends on COVID-19 in Korea Using Latent Dirichlet Allocation. Journal of The Korea Society of Computer and Information, 25(12), 83-91. DOI : 10.9708/jksci.2020.25.12.083
- M. L. Jockers & R. Thalken. (2014). Text analysis with R for students of literature,. New York: Springer. DOI : 10.1007/978-3-319-03164-4
- J. Cao, T. Xia, J. Li, Y. Zhang, & S. Tang. (2009). A density-based method for adaptive lda model selection, Neurocomputing, 72(7), 1775-1781. DOI: 10.1016/j.neucom.2008.06.011
- R. Arun, V. Suresh, C. V. Madhavan, & M. N. Murthy. (2010). On finding the natural number of topics with latent dirichlet allocation: Some observations, Pacific-Asia Conference on Knowledge Discovery and Data Mining, Part I, 391-402. DOI : 10.1007/978-3-642-13657-3_43
- T. L. Griffiths & M. Steyvers. (2004). Finding scientific topics. Proceedings of the National academy of Sciences. 101, suppl 1, 5228-5235. DOI: 10.1073/pnas.0307752101
- R. Deveaud, E. SanJuan, & P. Bellot. (2014). Accurate and effective latent concept modeling for ad hoc information retrieval. Document numerique. 17(1), 61-84. DOI: 10.3166/DN.17.1.61-84
- KOSIS KOrean Statistical Information Service Statistics Korea, https://kosis.kr/statHtml/statHt ml.do?orgId=101&tblId=DT_1YL21181
- C. Sievert & K. Shirley. (2014). LDAvis: A method for visualizing and interpreting topics. Conference: Workshop on Interactive Language Learning, Visualization, and Interfaces at the Association for Computational Linguistics. 63-70. DOI:10.13140/2.1.1394.3043
- KESS, Korean Educational Statistics Service, https://kess.kedi.re.kr