과제정보
본 논문은 농촌진흥청 공동연구사업의 지원을 받아 연구되었음(과제번호 : PJ01455903).
참고문헌
- Alhnaity, B., Pearson, S., Leontidis, G., and Kollias, S. 2020. Using Deep Learning to Predict Plant Growth and Yield in Greenhouse Environments. Acta Hortic 1296:425-432. https://doi.org/10.17660/actahortic.2020.1296.55
- Chen, T., Yin, H., Chen, H., Wu., L., Wang, H., Zhou, X., and Li, X. 2018. TADA : Trend Alignment with Dual-Attention Multi-Task Recurrent Neural Networks for Sales Prediction. 2018 IEEE International Conference on Data Mining 49-58.
- Chen, Y., Lin and W., Wang, J. 2019. A dual-Attention-Based Stock Price Trend Prediction Model With Dual Features. IEEE Access 7:148047-148058. https://doi.org/10.1109/access.2019.2946223
- Choudhury, A. and Jones, J. 2014. Crop Yield Prediction Using Time Series Models, Journal of Economic and Economic Education Research 15(3):53-68.
- Chung, D. and Han, D. 2018. Evaluation of Forecasting Performance of Rice Yield Models under Climate Change. Korea Environmental Policy And Administration Society 26(4):197-222. https://doi.org/10.15301/jepa.2018.26.4.197
- Dharmaraja, S., Jain, V., Anjoy, P., and Chandra, H. 2020. Empirical Analysis for Crop Yield Forecasting in India, Agric Res. 9(1):132-138. https://doi.org/10.1007/s40003-019-00413-x
- Farook, A., J., Kannan, K., S. 2014. Climate Change Impact on Rice Yield in India-Vector Autoregression Approach, Sri Lankan Journal of Applied Statistics 16(3):161-178. https://doi.org/10.4038/sljastats.v16i3.7830
- Feng, L., Zhao, C., Sun, Y. 2020. Dual attention-based encoder-decoder: A customized sequence-to-sequence learning for soft sensor development. IEEE Transactions on Neural Networks and Learning Systems 1-12.
- Han, M. and Yu, S. 2019. Prediction of Baltic Dry Index by Application of Long Short-Term Memory. Journal of Korean Society for Quality Management 47(3):497-508. https://doi.org/10.7469/JKSQM.2019.47.3.497
- Hossain, M., M., Abdulla, F. 2015. On the Production Behaviors and Forecasting the Tomatoes Production in Bangladesh Journal of Agricultural Economics and Development 4(5):66-74.
- Jiang, Z., Liu, C., Ganapathysubramanian, B. Hayes, and D., Sarkar, S. 2020. Predicting county-scale maize yields with publicly available data, Scientific Reports 10:14957. https://doi.org/10.1038/s41598-020-71898-8
- Kim, N. and Lee, Y. 2016. Experimental Predictions of Crop Yields Using Time-Series Modeling of Climate Reanalysis Data: A Case of Iowa, USA, 1960-2009. The Korean Cartographic Association 16(2):115-126.
- Lee, S., Yoon, Y, Jung, J., Sim, H., Chang, T., and Kim, Y. 2020. A Machine Learning Model for Predicting Silica Concentrations through Time Series Analysis of Mining Data. Journal of Korean Society for Quality Management 48(3):511-520. https://doi.org/10.7469/JKSQM.2020.48.3.511
- Li, L., Wu, Y., Zhang, Y., and Zhao, T. 2018. Time+User Dual Attention Based Sentiment Prediction for Multiple Social Network Texts With Time Series IEEE Access 7:17644-17653. https://doi.org/10.1109/access.2019.2895897
- Na, M., Cho, W., and Kim, S. 2020. A Construction of Web Application Platform for Detection and Identification of Various Diseases in Tomato Plants Using a Deep Learning Algorithm. Journal of Korean Society for Quality Management 48(4):58-596.
- Oh, S. and Kim, M. 2017. Predicting Onion Production by Weather and Spatial Time Series Model. Journal of The Korean Data Analysis Society 19(5):2447-2456. https://doi.org/10.37727/jkdas.2017.19.5.2447
- Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, and G., Cottrell, G. 2017. A dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction. arXiv preprint:1704.02971.
- Shook, J., Gangopadhyay, T., and Wu, L., Ganapathysubramanian, B., Sarkar, S., Singh, A., K. 2020. Crop Yield Prediction Integrating Genotype and Weather Variables Using Deep Learning arXiv preprint:2006.13847.