DOI QR코드

DOI QR Code

동시베리아해 비구형 망가니즈단괴의 특성

Characteristics of Non-Spherical Manganese Nodule from the East Siberian Sea

  • 구효진 (경상국립대학교 지질과학과 및 기초과학연구소) ;
  • 박무성 (경상국립대학교 지질과학과 및 기초과학연구소) ;
  • 서충만 (경상국립대학교 지질과학과 및 기초과학연구소) ;
  • 조현구 (경상국립대학교 지질과학과 및 기초과학연구소)
  • Koo, HyoJin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Park, MuSeong (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Seo, ChoongMan (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, HyenGoo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 투고 : 2021.11.22
  • 심사 : 2021.12.20
  • 발행 : 2021.12.31

초록

유라시아 대륙 주변부 북극해의 천해에서도 태평양이나 인도양의 심해저에서와 같이 많은 망가니즈단괴가 발견되고 있지만, 이에 관한 자세한 연구는 많이 수행되고 있지 않다. 아라온호의 북극해 탐사를 통하여 동시베리아해에서 채취한 망가니즈단괴는 Mn/Fe 비가 매우 높아 Mn 자원으로서의 가능성이 매우 크다. 이번 연구에서는 북극 동시베리아해에서 산출되는 망가니즈단괴 중 약 7%를 차지하는 비구형 단괴를 외부형태에 따라 구분하고, 크기와 무게, 내부조직을 관찰하였으며, X선회절분석 그래프의 피크 면적비를 이용한 산화망가니즈광물의 반정량 분석과 지화학분석을 실시하여, 그 결과를 구형 단괴와 비교하였다. 비구형 망가니즈단괴는 외부형태에 따라 5가지로 구분되며, 타원체형, 판상형과 불규칙형이 대부분을 차지하며, 장경과 무게는 비례하는 경향이 있다. 비구형 단괴는 모두 핵을 가지며, 핵 성분은 이질 퇴적물이 주를 이룬다. 산화망 가니즈광물의 평균 함량은 버네사이트, 부서라이트, 토도로카이트 순으로 감소하며, 함량비는 외부형태, 내부조직이나 핵 성분과는 상관관계가 없지만, 단괴의 내부에서 외부로 갈수록 토도로카이트와 부서라이트는 감소하고, 버네사이트가 증가하는 경향이 있다. 북극해의 다른 천해는 물론 태평양이나 인도양의 심해저의 단괴에 비하여 Mn 함량이 많고, Mn/Fe 비가 높다. 비구형 단괴는 구형 단괴에 비하여 크기가 크고 무겁고, Mn 함량이 적고 Mn/Fe 비는 낮지만, 광물조성이나 내부조직에서는 큰 차이가 없다. 동시베리아해에서 채취된 모든 망간단괴는 Mn/Fe 비가 5 이상으로 높으므로 대부분 속성작용에 의하여 형성된 것으로 여겨진다.

Manganese nodules have been found in the shallow water depth of the Arctic Ocean as well as in the abyssal plains of the Pacific and Indian Oceans, but detailed study for them were rarely investigated. Manganese nodules, collected from the East Siberian Sea through the Arctic Expedition using Araon ice braking vessel, have a high potential for Mn mineral resources because they have high Mn content with high Mn/Fe ratio. This study investigated the external form, size and weight, internal texture for the non-spherical manganese nodule, which has about 7 % of total nodule from the East Siberian Sea. This study also researched the relative Mn-oxide mineral composition using the peak area ratio of X-ray diffraction pattern and their chemical composition. All data obtained from non-spherical nodules were compared with the spherical ones. Ellipsoidal, platy and irregular types are common among 5 groups of non-spherical manganese nodule based on the external form, and major axis and weight have positive relationship. All non-spherical manganese nodules have core mainly composed of mud sediments. The average Mn oxide mineral contents in nodules are birnessite, buserite and todorokite in descending order. Although mineral composition does not show any correlation with the external form, kind of core or internal structure, todorokite and buserite contents tend to increase and birnessite content decrease from the surface to the core in the nodule. Non-spherical manganese nodules have higher Mn content and Mn/Fe ratio than those from the shallow water depth of the Arctic Sea and even in the deep-sea of the Pacific and Indian Ocean. Although non-spherical nodule is larger and heavier, and has lower Mn content and Mn/Fe ratio than spherical nodule, there are not any differences in mineral composition and internal structure between them. Almost all manganese nodules collected from the East Siberian Sea are attributed to diagenetic process, because they are higher than 5 in Mn/Fe ratio.

키워드

과제정보

이 연구는 2020년도 정부(교육부)의 재원으로 한국연구재단(기초연구사업, 2020R1F1A104965711, 높은 Mn/Fe 비를 가지는 동시베리아해 망간단괴의 형성 환경 및 기작 연구)의 지원을 받아 수행되었습니다. 부족한 원고를 세심하게 검토하고, 유익한 지적을 하여주신 익명의 심사자에게도 감사를 드립니다.

참고문헌

  1. Atkins, A.L., Shaw, S. and Peacock, C.L., 2014, Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments. Geochimica et Cosmochimica Acta, 144, 109-125. https://doi.org/10.1016/j.gca.2014.08.014
  2. Baturin, G.N., 2019, Distribution of elements in ferromanganese nodules in seas and lakes. Lithology and Mineral Resources, 54, 362-373. https://doi.org/10.1134/s002449021905002x
  3. Baturin, G.N. and Dubinchuk, V.T., 2011, The composition of ferromanganese nodules of the Chukchi and East Siberian Seas. Doklady Akademii Nauk, 440, 93-99.
  4. Baturin, G.N., Dubinchuk, V.T. and Novigatsky, A.N., 2016, Phase distribution of elements in ferromanganese nodules of the Kara Sea. Doklady Akademii Nauk, 471, 334-339.
  5. Biscaye, P.E., 1965, Mineralogy and sedimentation of recent deep-sea clay in the Antlantic Ocean and adjacent seas and oceans. Geological Society of American Bulletin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  6. Bogdanova, O.Y., Gorshkov, A.I., Novikov, G.V. and Bogdanov, Y.A., 2008, Mineralogy of morphogenetic types of ferromanganese deposits in the world ocean. Geology of Ore Deposits, 50, 462-469. https://doi.org/10.1134/S1075701508060044
  7. Bonatti, E., Kraemer, T. and Rydell, H., 1972, Classification and genesis of submarine iron-manganese deposits. In Ferromanganese deposits on the ocean floor (ed. Horn, D.R.), NSF, Washington D.C., 149-166.
  8. Cherkashov, G., Smyslov, A. and Soreide, F., 2013, Fe-Mn nodules of the Finnish bay (Baltic Sea): Exploration and exploitation experience. In: Recent developments in Atlantic seabed minerals exploration and other topics of timely interest (ed. Morgan, C.L.), The Underwater Mining Institute, Rio de Janeiro, 4p.
  9. Choi, H.S., Chang, S.-W. and Lee, S.-R., 2000, Correlation between mineralogical and chemical compositions of the microtextures in manganese nodules. Journal of the Mineralogical Society of Korea, 13, 205-220 (In Korean with English abstract).
  10. Glasby, G.P., Emelyanow, E.M., Zhamoida, V.A., Baturin, G.N., Leipe, T., Bahlo, R. and Bonacker, P., 1997, Environments of formation of ferromanganese concretions in the Baltic Sea: a critical review. In: Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits (eds. Nickelson, K., Hein, J.R., Buhn, B. and Dasgupta, S.), Geological Society Special Publication, 119, 213-238. https://doi.org/10.1144/GSL.SP.1997.119.01.14
  11. Halbach, P. and Puteanus, D., 1988, Geochemical trends of different genetic types of nodules and crusts. In The manganese nodule belt of the Pacific Ocean: Geological environment, nodule formation, and mining aspects (eds. Halbach, P., Friedrich, G. and von Stackelberg, U.), Ferdinand Enke Verlag, Stuttgart, 61-69.
  12. Hayles, S., Al, T., Cornett, J., Harrison, A. and Zhao, J., 2021, Growth rates for freshwater ferromanganese concretions indicate regional climate change in eastern Canada at the Northgrippian-Meghalayan boundary. The Holocene, 09596836211011652.
  13. Hein, J.R. and Koschinsky, A., 2014, Deep-ocean ferromanganese crusts and nodules. In Treatise on geochemistry (2nd ed.) (eds. Holland, H.D. and Turekian, K.K.), 13, Elsevier, Oxford, 273-291.
  14. Hein, J.R., Spinardi, F., Okamoto, N., Mizell, K., Thorburn, D. and Tawake, A., 2015, Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geology Reviews, 68, 97-116. https://doi.org/10.1016/j.oregeorev.2014.12.011
  15. Hlawatsch, S., Garbe-Schonberg, C.D., Lechtenberg, F., Manceau, A., Tamura, N., Kulik, D.A. and Kersten, M., 2002, Trace metal fluxes to ferromanganese nodules from the western Baltic Sea as a record for long-term environmental changes. Chemical Geology, 181, 697-709.
  16. Ingri, J., 1985, Geochemistry of ferromanganese concretions in the Barents Sea. Marine Geology, 67, 101-119. https://doi.org/10.1016/0025-3227(85)90150-1
  17. Jin, Y.K. and Shipboard Scientific Party, 2018, ARA08C Cruise Report: 2017 Korea-Canada-USA Beaufort Sea Research Program. Korea Polar Research Institute. 214p.
  18. Kim, C.-M., Jeong, J.O., Gu, D. and Han, R., 2017, Identification of materials in principal slip zones of faults by X-ray diffraction analysis using a small amount of sample. Journal of the Geological Society of Korea, 53, 873-883. https://doi.org/10.14770/jgsk.2017.53.6.873
  19. Kim, H.-I., Koo, H.-J. and Cho, H.G., 2021, Raman spectroscopic study for understanding the occurrence of manganese oxide minerals in polymetallic nodules of East Siberian Sea. Proceedings of the Annual Joint Conference, the Mineralogical Society of Korea and the Petrological Society of Korea, 28.
  20. Kolesnik, O.N. and Kolesnik, A.N., 2013, Specific chemical and mineral composition of ferromanganese nodules from the Chukchi Sea. Russian Geology and Geophysics, 54, 653-663. https://doi.org/10.1016/j.rgg.2013.06.001
  21. Koo, H.J., Cho, H.G., Yoo, C.M. and Jin, Y.K., 2017, Characteristics of manganese nodule from the East Siberian Sea. Journal of the Mineralogical Society of Korea, 30, 219-227 (In Korean with English abstract). https://doi.org/10.9727/jmsk.2017.30.4.219
  22. Kuhn, T., Wegorzewski, A., Ruhlemann, C. and Vink, A., 2017, Composition, formation, and occurrence of polymetallic nodules. In Deep-sea mining (ed. Sharma, R.), Springer, 23-63.
  23. Ministry of Maritime Affairs and Fisheries (MOMAF) (2003) A report on 2002 deep seabed mineral resources exploration. CRPM137-00-1503-5, Seoul, 683p.
  24. Sorem, R.K. and Fewkes, R.H., 1979, Manganese nodules, research data and methods of investigation. Plenum, New York, 732p.
  25. Usui, A. and Moritani, T., 1992, Manganese nodule deposits in the Central Pacific Basin: Distribution, geochemistry, mineralogy and genesis. In Geology and off-shore mineral resources of central Pacific basin (eds. Kreating, B.H. and Bolton, B.R.) Circum-Pacific council for energy and mineral resources, Earth Science Series, 14, 205-223.
  26. Vereshchagin, O.S., Perova, E.N., Brusnitsyn, A.I., Ershova, V.B., Khudoley, A.K., Shilovskikh, V.V. and Molchanov, E.V., 2019, Ferro-manganese nodules from the Kara Sea: Mineralogy, geochemistry and genesis. Ore Geology Reviews, 106, 192-204. https://doi.org/10.1016/j.oregeorev.2019.01.023
  27. Wegorzewski, A.V. and Kuhn, T., 2014, The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean. Marine Geology, 357, 123-138. https://doi.org/10.1016/j.margeo.2014.07.004
  28. Wegorzewski, A.V., Kuhn, T., Dohrmann, R., Wirth, R. and Grangeon, S., 2015, Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+ Cu content from the central Pacific Ocean. American Mineralogist, 100, 2497-2508. https://doi.org/10.2138/am-2015-5122
  29. Yu, H.J., Shin, E.J., Koo, H.J. and Cho, H.G., 2020, Semiquantitative analysis of manganese oxide mineral in manganese nodule from the East Siberian Sea. Korean Journal of Mineralogy and Petrology, 33, 427-437 (In Korean with English abstract). https://doi.org/10.22807/KJMP.2020.33.4.427