DOI QR코드

DOI QR Code

Prediction Model of Hypertension Using Sociodemographic Characteristics Based on Machine Learning

머신러닝 기반 사회인구학적 특징을 이용한 고혈압 예측모델

  • 이범주 (한국한의학연구원 디지털임상연구부)
  • Received : 2021.08.27
  • Accepted : 2021.10.09
  • Published : 2021.11.30

Abstract

Recently, there is a trend of developing various identification and prediction models for hypertension using clinical information based on artificial intelligence and machine learning around the world. However, most previous studies on identification or prediction models of hypertension lack the consideration of the ideas of non-invasive and cost-effective variables, race, region, and countries. Therefore, the objective of this study is to present hypertension prediction model that is easily understood using only general and simple sociodemographic variables. Data used in this study was based on the Korea National Health and Nutrition Examination Survey (2018). In men, the model using the naive Bayes with the wrapper-based feature subset selection method showed the highest predictive performance (ROC = 0.790, kappa = 0.396). In women, the model using the naive Bayes with correlation-based feature subset selection method showed the strongest predictive performance (ROC = 0.850, kappa = 0.495). We found that the predictive performance of hypertension based on only sociodemographic variables was higher in women than in men. We think that our models based on machine leaning may be readily used in the field of public health and epidemiology in the future because of the use of simple sociodemographic characteristics.

최근 전 세계적으로 인공지능과 머신러닝을 기반으로 임상정보를 활용한 다양한 고혈압 식별 및 예측 모델이 개발되고 있다. 그러나 고혈압 관련 모델에 대한 대부분의 선행연구는 침습적 및 고가의 분석비용을 통한 변수들이 대부분 사용되었고, 인종과 국가의 특징에 대한 고려가 충분히 제시되지 않았다. 따라서 이 연구의 목적은 일반적인 사회인구 통계학적 변수만을 사용하여 쉽게 이해할 수 있는 한국인 성인 고혈압 예측 모델을 제시하는 것이다. 이 연구에서 사용된 데이터는 질병관리청 국민건강영양조사 (2018년)를 이용하였다. 남성에서, wrapper-based feature subset selection 메소드와 naive Bayes를 이용한 모델이 가장 높은 예측 성능 (ROC = 0.790, kappa = 0.396)을 보였다. 여성의 경우, correlation-based feature subset selection 메소드와 naive Bayes를 사용한 모델이 가장 높은 예측 성능(ROC = 0.850, kappa = 0.495)을 나타내었다. 또한 모든 모델들에서 사회인구 통계학적 변수들만을 이용한 고혈압의 예측 성능이 남성보다 여성에게서 더 높게 나타나는 것을 발견하였다. 본 연구의 결과인 machine learning 기반 고혈압 예측 모델은 한국인에 대한 단순한 사회인구학적 특성만을 사용하였기 때문에 향후 공중 보건 및 역학 분야에서 쉽게 사용될 수 있을 것으로 예상된다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.2021-0-00104, 비대면 심혈관 건강관리를 위한 디지털헬스 서비스 플랫폼 개발).

References

  1. B. J. Lee and J. Y. Kim, "Identification of type 2 diabetes risk factors using phenotypes consisting of anthropometry and triglycerides based on machine learning," IEEE Journal of Biomedical and Health Informatics, Vol.20, No.1, pp.39-46, 2015. https://doi.org/10.1109/JBHI.2015.2396520
  2. B. J. Lee, B. Ku, J. Nam, D. D. Pham, and J. Y. Kim, "Prediction of fasting plasma glucose status using anthropometric measures for diagnosing type 2 diabetes," IEEE Journal of Biomedical and Health Informatics, Vol.18, No.2, pp.555-561, 2014. https://doi.org/10.1109/JBHI.2013.2264509
  3. Z. Ren, et al., "A novel predicted model for hypertension based on a large cross-sectional study," Scientific Reports, Vol.10, No.10615, pp.1-9, 2020. https://doi.org/10.1038/s41598-019-56847-4
  4. B. J. Lee and J. Y. Kim, "Identification of the best anthropometric predictors of serum high- and low-density lipoproteins using machine learning," IEEE Journal of Biomedical and Health Informatics, Vol.19, No.5, pp.1747-1756, 2015. https://doi.org/10.1109/JBHI.2014.2350014
  5. B. J. Lee and J. Y. Kim, "Indicators of hypertriglyceridemia from anthropometric measures based on data mining," Computers in Biology and Medicine, Vol.57, pp.201-211, 2015. https://doi.org/10.1016/j.compbiomed.2014.12.005
  6. B. M. Heo and K. H. Ryu, "Prediction of prehypertenison and hypertension based on anthropometry, blood parameters, and spirometry," International Journal of Environmental Research and Public Health, Vol.15, No.11, pp.2571, 2018. https://doi.org/10.3390/ijerph15112571
  7. B. J. Lee and J. Y. Kim, "Predicting visceral obesity based on facial characteristics," BMC Complementary and Alternative Medicine, Vol.14, No.248, pp.1-9, 2014. https://doi.org/10.1186/1472-6882-14-1
  8. K. Tsoi, et al., "Applications of artificial intelligence for hypertension management," Journal of Clinical Hypertension (Greenwich), Vol.23, No.3, pp.568-574, 2021. https://doi.org/10.1111/jch.14180
  9. B. J. Lee and B. Ku, "A comparison of trunk circumference and width indices for hypertension and type 2 diabetes in a large-scale screening: A retrospective cross-sectional study," Scientific Reports, Vol.8, No.13284, pp.1-10, 2018.
  10. B. J. Lee and M. H. Yim, "Comparison of anthropometric and body composition indices in the identification of metabolic risk factors," Scientific Reports, Vol.11, No.9931, pp.1-10, 2021. https://doi.org/10.1038/s41598-020-79139-8
  11. J. A. Kim, et al., "The prevalence and risk factors associated with isolated untreated systolic hypertension in Korea: The Korean National Health and Nutrition Survey 2001," Journal of Human Hypertension, Vol.21, No.2, pp.107-113, 2007. https://doi.org/10.1038/sj.jhh.1002119
  12. B. J. Lee and J. Y. Kim, "A comparison of the predictive power of anthropometric indices for hypertension and hypotension risk," PLoS ONE, Vo.9, No.1, pp.e84897, 2014. https://doi.org/10.1371/journal.pone.0084897
  13. B. J. Lee, Y. J. Jeon, B. Ku, J. U. Kim, J. H. Bae, and J. Y. Kim, "Association of hypertension with physical factors of wrist pulse waves using a computational approach: A pilot study," BMC Complementary and Alternative Medicine, Vol.15, No.222, pp.1-9, 2015. https://doi.org/10.1186/s12906-015-0520-z
  14. L. Ang, B. J. Lee, H. Kim, and M. H. Yim, "Prediction of hypertension based on facial complexion," Diagnostics, Vol.11, No.540, pp.1-13, 2021.
  15. L. Zhang, et al., "Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: A cross-sectional study of chronic diseases in central China," PLoS ONE, Vol.15, No.5, pp.e0233166, 2020. https://doi.org/10.1371/journal.pone.0233166
  16. L. A. AlKaabi, L. Sl. Ahmed, M. F. Al Attiyah, and M. E. Abdel-Rahman, "Predicting hypertension using machine learning: Findings from qatar biobank study," PLoS ONE, Vol.15, No.10, pp.e0240370, 2020. https://doi.org/10.1371/journal.pone.0240370