DOI QR코드

DOI QR Code

Cancer Patient Specific Driver Gene Identification by Personalized Gene Network and PageRank

개인별 유전자 네트워크 구축 및 페이지랭크를 이용한 환자 특이적 암 유발 유전자 탐색 방법

  • Received : 2021.09.16
  • Accepted : 2021.10.28
  • Published : 2021.12.31

Abstract

Cancer patients can have different kinds of cancer driver genes, and identification of these patient-specific cancer driver genes is an important step in the development of personalized cancer treatment and drug development. Several bioinformatic methods have been proposed for this purpose, but there is room for improvement in terms of accuracy. In this paper, we propose NPD (Network based Patient-specific Driver gene identification) for identifying patient-specific cancer driver genes. NPD consists of three steps, constructing a patient-specific gene network, applying the modified PageRank algorithm to assign scores to genes, and identifying cancer driver genes through a score comparison method. We applied NPD on six cancer types of TCGA data, and found that NPD showed generally higher F1 score compared to existing patient-specific cancer driver gene identification methods.

암을 유발하는 유전자는 모든 암 환자에게 공통적인 것은 아니며, 이러한 환자 특이적 암 유발 유전자의 탐색은 개인 맟춤형 암 치료 및 항암제 개발에 있어서 매우 중요하다. 환자 특이적 암 유발 유전자를 찾기 위한 생물 정보학 연구들이 있어왔지만, 아직 정확도 면에서는 발전의 여지가 있다. 본 논문에서는 환자 특이적 암 유발 유전자를 탐색하기 위하여 NPD (Network based Patient-specific Driver gene identification)라는 방법을 제안한다. NPD는 환자 특이적 유전자 네트워크를 구축하고, 여기에 수정된 PageRank 알고리즘을 적용하여 유전자에 점수를 부여한 후, 유전적 변이 데이터를 사용한 승률 계산 방법을 통하여 암 유발 유전자를 찾는 세 단계로 이루어진다. TCGA 데이터 베이스의 여섯 개의 암 데이터에 NPD를 적용한 결과, NPD가 기존의 환자 특이적 암 유발 유전자 탐색 방법들보다 전체적으로 높은 F1 점수를 보여줌을 확인할 수 있었다.

Keywords

Acknowledgement

이 논문은 인천대학교 자체연구비(2021-0097) 의하여 연구되었음.

References

  1. M. S. Lawrence, et al., "Mutational heterogeneity in cancer and the search for new cancer-associated genes," Nature, Vol.499, No.7457, pp.214-218, 2013. https://doi.org/10.1038/nature12213
  2. C. Arnedo-Pac, L. Mularoni, F. Muinos, and A. Gonzalez-Perez, and N. Lopez-Bigas, "OncodriveCLUSTL: a sequence-based clustering method to identify cancer drivers," Bioinformatics, Vol.35, No.22, pp.4788-4790, 2019. https://doi.org/10.1093/bioinformatics/btz501
  3. P. Luo, Y. Ding, X. Lei, and F. X. Wu, "deepDriver: Predicting cancer driver genes based on somatic mutations using deep convolutional neural networks," Frontiers in Genetics, Vol.10, pp.13, 2019. https://doi.org/10.3389/fgene.2019.00013
  4. J. Nulsen, H. Misetic, C. Yau, and F. D. Ciccarelli, "Pancancer detection of driver genes at the single-patient resolution," Genome Medicine, Vol.13, No.1, pp.1-14, 2021. https://doi.org/10.1186/s13073-020-00808-4
  5. H. Yang, Q. Wei, X. Zhong, H. Yang, and B. Li, "Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework," Bioinformatics, Vol.33, No.4, pp.483-490, 2017. https://doi.org/10.1093/bioinformatics/btw662
  6. D. Bertrand, et al., "Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles," Nucleic Acids Research, Vol.43, No.7, pp.e44-e44, 2015. https://doi.org/10.1093/nar/gku1393
  7. V. V. Pham, et al., "DriverGroup: A novel method for identifying driver gene groups," Bioinformatics, Vol.36, No. (Supplement_2), pp.i583-i591, 2020. https://doi.org/10.1093/bioinformatics/btaa797
  8. D. Pe'er and N. Hacohen, "Principles and strategies for developing network models in cancer," Cell, Vol.144, No.6, pp.864-873, 2011. https://doi.org/10.1016/j.cell.2011.03.001
  9. M. R. Stratton, "Journeys into the genome of cancer cells," EMBO Molecular Medicine, Vol.5, No.2, pp.169-172, 2013. https://doi.org/10.1002/emmm.201202388
  10. L. Ding, M. C. Wendl, D. C. Koboldt, and E. R. Mardis, "Analysis of next-generation genomic data in cancer: Accomplishments and challenges," Human Molecular Genetics, Vol.19, No.R2, pp.R188-R196, 2010. https://doi.org/10.1093/hmg/ddq391
  11. J. Reimand and G. D. Bader, "Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers," Molecular Systems Biology, Vol.9, No.1, pp.637, 2013. https://doi.org/10.1038/msb.2012.68
  12. J. P. Hou and J. Ma. "DawnRank: Discovering personalized driver genes in cancer," Genome Medicine, Vol.6, No.7, pp.1-16, 2014. https://doi.org/10.1186/gm520
  13. W. F. Guo, S. W. Zhang, T. Zeng, Y. Li, and J, Gao, "A novel network control model for identifying personalized driver genes in cancer," PLoS Computational Biology, Vol.15, No.11, pp.e1007520, 2019. https://doi.org/10.1371/journal.pcbi.1007520
  14. W. F. Guo, et al., "Discovering personalized driver mutation profiles of single samples in cancer by network control strategy," Bioinformatics, Vol.34, No.11, pp.1893-1903, 2018. https://doi.org/10.1093/bioinformatics/bty006
  15. G. Dinstag and R. Shamir, "PRODIGY: Personalized prioritization of driver genes," Bioinformatics, Vol.36, No.6, pp.1831-1839, 2020.
  16. L. Page, S. Brin, R. Motwani, and T. Winograd, "The Page-Rank citation ranking: Bringing order to the web," Stanford InfoLab, 1999.
  17. K. Tomczak, P. Czerwinska, and M. Wiznerowicz, "The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge," Contemporary Oncology, Vol.19, No.1A, pp.A68, 2015.
  18. D. Croft, et al. "Reactome: A database of reactions, pathways and biological processes," Nucleic Acids Research, Vol.39, No.(suppl_1), pp.D691-D697, 2010. https://doi.org/10.1093/nar/gkq1018
  19. Z. P. Liu, C. Wu, H. Miao, and H. Wu, "RegNetwork: An integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse," Database, 2015, 2015.
  20. H. Han, et al., "TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions," Nucleic Acids Research, Vol.46, No.D1, pp.D380-D386, 2018. https://doi.org/10.1093/nar/gkx1013
  21. G. Gundem, et al., "IntOGen: Integration and data mining of multidimensional oncogenomic data," Nature Methods, Vol.7, No.2, pp.92-93, 2010. https://doi.org/10.1038/nmeth0210-92
  22. Z. Sondka, S. Bamford, C. G. Cole, S. A. Ward, L. Dunham, and S. A. Forbes, "The COSMIC Cancer Gene Census: Describing genetic dysfunction across all human cancers," Nature Reviews Cancer, Vol.18, No.11, pp.696-705, 2018. https://doi.org/10.1038/s41568-018-0060-1
  23. D. Repana, et al., "The Network of Cancer Genes (NCG): A comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens," Genome Biology, Vol.20, No.1, pp.1-12, 2019. https://doi.org/10.1186/s13059-018-1612-0