Acknowledgement
이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국산업기술평가관리원의 지원을 받아 수행된 연구임(No.20009899, 지능형 케어 서비스 개발).
References
- W. Chen, Z. Jiang, H. Guo, and X. Ni, "Fall detection based on key points of human-skeleton using openpose," Symmetry, Vol.12, No.5, pp.744, May 2020. https://doi.org/10.3390/sym12050744
- H. Li, A. Shrestha, H. Heidari, J. Le Kernec, and F. Fioranelli, "Bi-LSTM network for multimodal continuous human activity recognition and fall detection," IEEE Sensors Journal, Vol.20, No.3, pp.1191-1201, 2020. doi: 10.1109/JSEN.2019.2946095
- J. W. Si, et al., "Fall detection using skeletal coordinate vector and LSTM model," Journal of Korean Institute of Information Technology, Vol.18, No.12, pp.19-29, Dec. 2020. http://dx.doi.org/10.14801/jkiit.2020.18.12.19
- S. Mekruksavanich and A. Jitpattanakul, "LSTM networks using smartphone data for sensor-based human activity recognition in smart homes," Sensors, Vol.21, Iss.5, pp.1636, 2021. https://doi.org/10.3390/s21051636
- Y. K. Kang, H. Y. Kang, and D. S. Weon, "Human skeleton keypoints based fall detection using GRU," Journal of the Korea Academia-Industrial Cooperation Society, Vol.22, No.2, pp.127-133, 2021.
- M. Waheed, H. Afzal, and K. Mehmood, "NT-FDS-A noise tolerant fall detection system using deep learning on weara ble devices," Sensors, Vol.21, Iss.6, Articles No.2006, 2021. https://doi.org/10.3390/s21062006
- Q. Xu, G. Huang, M. Yu, and Y. Guo, "Fall prediction based on key points of human bones," Physica A: Statistical Mechanics and its Applications, Vol.540, Feb. 2020.
- C. B. Lin, Z. Dong, W. K. Kuan, and Y. F. Huang, "A framework for fall detection based on openpose skeleton and LSTM/GRU models," Applied Sciences, Vol.11, No.1, pp.329, 2021. https://doi.org/10.3390/app11010329
- Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh, "Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields," In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition(CVPR), 2016.
- PoseNet [Internet], https://github.com/tensorflow/tfjs-models/tree/-master/posenet
- MS Kinect v2 [Internet], https://azure.microsoft.com/en-us/services/-kinect-dk/
- O. Yildirim, "A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification," Computers in Biology and Medicine, Vol.96, pp.189-202, 2018. https://doi.org/10.1016/j.compbiomed.2018.03.016
- A. Graves, N. Jaitly, and A.-R. Mohamed, "Hybrid speech recognition with deep bidirectional LSTM," in IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp.273-278, 2013.
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, Vol.521, No.7553, pp.436-444, 2015. https://doi.org/10.1038/nature14539
- A. Onan and M. A. Tocoglu, "A term weighted neural language model and stacked bidirectional LSTM based framework for sarcasm identification," IEEE Access, Vol.9, pp.7701-7722, 2021. https://doi.org/10.1109/ACCESS.2021.3049734
- D. Utebayeva, A. Almagambetov, M. Alduraibi, Y. Temirgaliyev, L. Ilipbayeva, and S. Marxuly, "Multi-label UAV sound classification using Stacked Bidirectional LSTM," Fourth IEEE International Conference on Robotic Computing (IRC), 2020.
- K. Jun, D. Lee, K. Lee, S. Lee, and M. S. Kim, "Feature extraction using an rnn auto-encoder for skeleton-based abnormal gait recognition," IEEE Access, Vol.8, pp.19196-19207, 2020. https://doi.org/10.1109/access.2020.2967845
- K. Adhikari, H. Bouchachia, and H. Nait-Charif, "Activity recognition for indoor fall detection using convolutional neural network," In Proceedings of the 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, pp.81-84, May 2017.
- Z. Cao, T. Simon, S. Wei, and Y. Sheikh, "Realtime multi-person 2D Pose Estimation Using Part Affinity Fields," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, pp.1302-1310, Jul. 2017.
- A. Fares, S. H. Zhong, and J. Jiang, "EEG-based image classification via a region-level stacked bi-directional deep learning framework," IEEE International Conference on Bioinformatics and Biomedicine Madrid, Spain, Dec. 2018.
- Robust Scaler [Internet], https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html