DOI QR코드

DOI QR Code

Task Migration in Cooperative Vehicular Edge Computing

협력적인 차량 엣지 컴퓨팅에서의 태스크 마이그레이션

  • Received : 2021.07.01
  • Accepted : 2021.09.09
  • Published : 2021.12.31

Abstract

With the rapid development of the Internet of Things(IoT) technology recently, multi-access edge computing(MEC) is emerged as a next-generation technology for real-time and high-performance services. High mobility of users between MECs with limited service areas is considered one of the issues in the MEC environment. In this paper, we consider a vehicle edge computing(VEC) environment which has a high mobility, and propose a task migration algorithm to decide whether or not to migrate and where to migrate using DQN, as a reinforcement learning method. The objective of the proposed algorithm is to improve the system throughput while satisfying QoS(Quality of Service) requirements by minimizing the difference between queueing delays in vehicle edge computing servers(VECSs). The results show that compared to other algorithms, the proposed algorithm achieves approximately 14-49% better QoS satisfaction and approximately 14-38% lower service blocking rate.

최근 사물인터넷의 기술이 빠르게 발전하면서 실시간 및 고성능의 처리를 요구하는 서비스들을 위해 멀티 액세스 엣지 컴퓨팅(MEC)이 차세대 기술로 부상하고 있다. 제한적인 서비스 영역을 가지는 MEC 사이에서 사용자들의 잦은 이동성은 MEC 환경에서 다뤄야 할 문제 중 하나이다. 본 논문에서는 이동성이 많은 차량 엣지 컴퓨팅 환경(VEC)을 고려하였으며, 강화 학습 기법의 일종인 DQN을 이용하여 마이그레이션 여부와 대상을 결정하는 태스크 마이그레이션 기법을 제안하였다. 제안한 기법의 목표는 차량 엣지 컴퓨팅 서버(VECS)들의 큐잉 지연시간의 차이를 이용한 로드 밸런싱을 고려하여 QoS 만족도 향상과 시스템의 처리량을 향상시키는 것이다. 제안한 기법을 다른 기법들과의 성능 비교를 통해 QoS 만족도 측면에서 약 14-49%, 서비스 거절률 측면에서는 약 14-38%로 더 좋은 성능을 보임을 확인하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1047113).

References

  1. M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, "5G-enabled tactile internet," IEEE Journal on Selected Areas in Communications, Vol.34, No.3, pp.460-473, 2016. https://doi.org/10.1109/JSAC.2016.2525398
  2. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A survey on mobile edge computing: The communication perspective," IEEE Communications Surveys & Tutorials, Vol. 19, No.4, pp.2322-2358, 2017. https://doi.org/10.1109/COMST.2017.2745201
  3. S. Wang, J. Xu, N. Zhang, and Y. Liu, "A survey on service migration in mobile edge computing," IEEE Access, Vol.6, pp.23511-23528, Apr. 2018. https://doi.org/10.1109/access.2018.2828102
  4. D. Baburao, T. Pavankumar, and C. S. R. Prabhu, "Survey on service migration, load optimization and load balancing in fog computing environment," 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), pp.1-5, India, 2019.
  5. D. Wang, X. Tian, H. Cui, and Z. Liu, "Reinforcement learning-based joint task offloading and migration schemes optimization in mobility-aware MEC network," China Communications, Vol.17, No.8, pp.31-44, 2020. https://doi.org/10.23919/jcc.2020.08.003
  6. J. Li, X. Shen, L. Chen, D. Pham, J. Ou, L. Wosinska, and J. Chen, "Service migration in fog computing enabled cellular networks to support real-time vehicular communications," IEEE Access, Vol.7, pp.13704-13714, 2019. https://doi.org/10.1109/access.2019.2893571
  7. C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, "Efficient mobility-aware task offloading for vehicular edge computing networks," IEEE Access, Vol.7, pp.26652-26664, 2019. https://doi.org/10.1109/access.2019.2900530
  8. Z. Gao, Q. Jiao, K. Xiao, Q. Wang, Z. Mo, and Y. Yang, "Deep reinforcement learning based service migration strategy for edge computing," 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE), San Francisco, pp.116-1165, 2019.
  9. J. Zhang, H. Guo, J. Liu, and Y. Zhang, "Task offloading in vehicular edge computing networks: A load-balancing solution," IEEE Transactions on Vehicular Technology, Vol.69, No.2, pp.2092-2104, 2020. https://doi.org/10.1109/tvt.2019.2959410
  10. Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, "Joint load balancing and offloading in vehicular edge computing and networks," IEEE Internet of Things Journal, Vol.6, No.3, pp.4377-4387, 2019. https://doi.org/10.1109/jiot.2018.2876298
  11. K. Addali and M. Kadoch, "Enhanced mobility load balancing algorithm for 5G small cell networks," 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Canada, pp.1-5, 2019.
  12. S. Moon and Y. Lim, "Migration with balancing based on reinforcement learning in vehicular edge computing," KIPS Conference 2021, Korea, May 2021.
  13. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, l. Antonoglou, D. Wierstra, and M. Riedmiller, "Playing atari with deep reinforcement learning," NIPS Deep Learning Workshop 2013, Dec. 2013.
  14. Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, "A joint service migration and mobility optimization approach for vehicular edge computing," IEEE Transactions on Vehicular Technology, Vol.69, No.8, pp.9041-9052, 2020. https://doi.org/10.1109/tvt.2020.2999617
  15. C. Liu, F. Tang, Y. Hu, K. Li, Z. Tang, and K. Li, "Distributed task migration optimization in MEC by extending multi-agent deep reinforcement learning approach," IEEE Transactions on Parallel and Distributed Systems, Vol.32, No.7, pp.1603-1614, Jul. 2021. https://doi.org/10.1109/TPDS.2020.3046737
  16. M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, CRAWDAD DataSet Epfl/Mobility, Feb. 2009. Available: http://crhttp://crawdad.org/epfl/mobility (accessed on 24 August 2021).