Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1047113).
References
- M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, "5G-enabled tactile internet," IEEE Journal on Selected Areas in Communications, Vol.34, No.3, pp.460-473, 2016. https://doi.org/10.1109/JSAC.2016.2525398
- Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A survey on mobile edge computing: The communication perspective," IEEE Communications Surveys & Tutorials, Vol. 19, No.4, pp.2322-2358, 2017. https://doi.org/10.1109/COMST.2017.2745201
- S. Wang, J. Xu, N. Zhang, and Y. Liu, "A survey on service migration in mobile edge computing," IEEE Access, Vol.6, pp.23511-23528, Apr. 2018. https://doi.org/10.1109/access.2018.2828102
- D. Baburao, T. Pavankumar, and C. S. R. Prabhu, "Survey on service migration, load optimization and load balancing in fog computing environment," 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), pp.1-5, India, 2019.
- D. Wang, X. Tian, H. Cui, and Z. Liu, "Reinforcement learning-based joint task offloading and migration schemes optimization in mobility-aware MEC network," China Communications, Vol.17, No.8, pp.31-44, 2020. https://doi.org/10.23919/jcc.2020.08.003
- J. Li, X. Shen, L. Chen, D. Pham, J. Ou, L. Wosinska, and J. Chen, "Service migration in fog computing enabled cellular networks to support real-time vehicular communications," IEEE Access, Vol.7, pp.13704-13714, 2019. https://doi.org/10.1109/access.2019.2893571
- C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, "Efficient mobility-aware task offloading for vehicular edge computing networks," IEEE Access, Vol.7, pp.26652-26664, 2019. https://doi.org/10.1109/access.2019.2900530
- Z. Gao, Q. Jiao, K. Xiao, Q. Wang, Z. Mo, and Y. Yang, "Deep reinforcement learning based service migration strategy for edge computing," 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE), San Francisco, pp.116-1165, 2019.
- J. Zhang, H. Guo, J. Liu, and Y. Zhang, "Task offloading in vehicular edge computing networks: A load-balancing solution," IEEE Transactions on Vehicular Technology, Vol.69, No.2, pp.2092-2104, 2020. https://doi.org/10.1109/tvt.2019.2959410
- Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, "Joint load balancing and offloading in vehicular edge computing and networks," IEEE Internet of Things Journal, Vol.6, No.3, pp.4377-4387, 2019. https://doi.org/10.1109/jiot.2018.2876298
- K. Addali and M. Kadoch, "Enhanced mobility load balancing algorithm for 5G small cell networks," 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Canada, pp.1-5, 2019.
- S. Moon and Y. Lim, "Migration with balancing based on reinforcement learning in vehicular edge computing," KIPS Conference 2021, Korea, May 2021.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, l. Antonoglou, D. Wierstra, and M. Riedmiller, "Playing atari with deep reinforcement learning," NIPS Deep Learning Workshop 2013, Dec. 2013.
- Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, "A joint service migration and mobility optimization approach for vehicular edge computing," IEEE Transactions on Vehicular Technology, Vol.69, No.8, pp.9041-9052, 2020. https://doi.org/10.1109/tvt.2020.2999617
- C. Liu, F. Tang, Y. Hu, K. Li, Z. Tang, and K. Li, "Distributed task migration optimization in MEC by extending multi-agent deep reinforcement learning approach," IEEE Transactions on Parallel and Distributed Systems, Vol.32, No.7, pp.1603-1614, Jul. 2021. https://doi.org/10.1109/TPDS.2020.3046737
- M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, CRAWDAD DataSet Epfl/Mobility, Feb. 2009. Available: http://crhttp://crawdad.org/epfl/mobility (accessed on 24 August 2021).