DOI QR코드

DOI QR Code

Non-dispersive infrared carbon dioxide sensor with an externally exposed optical cavity

광 도파관이 외부로 노출된 구조를 가지는 비분산적외선 이산화탄소 센서

  • Jung, Dong Geon (Advanced Mechatronics Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Junyeop (Advanced Mechatronics Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Do, Nam Gon (Advanced Mechatronics Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Jung, Daewoong (Advanced Mechatronics Group, Korea Institute of Industrial Technology (KITECH))
  • 정동건 (한국생산기술연구원 안전시스템연구그룹) ;
  • 이준엽 (한국생산기술연구원 안전시스템연구그룹) ;
  • 도남곤 (한국생산기술연구원 안전시스템연구그룹) ;
  • 정대웅 (한국생산기술연구원 안전시스템연구그룹)
  • Received : 2021.11.27
  • Accepted : 2021.11.30
  • Published : 2021.11.30

Abstract

In this study, a Non-Dispersive Infrared (NDIR) Carbon Dioxide (CO2) sensor with an externally exposed optical cavity is proposed for improving sensitivity. NDIR CO2 sensors with high performance must use a lamp-type infrared (IR) source with a strong IR intensity. However, a lamp-type IR source generates high thermal energy that induces thermal noise, interfering with the accuracy of the CO2 concentration measure. To solve this problem, the optical cavity of the NDIR CO2 sensor is exposed to quickly dissipate heat. As a result, the proposed NDIR CO2 sensor has a shorter warm-up time and a higher sensitivity compared to the conventional NDIR CO2 sensor.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 연구개발특구진흥재단의지원을받아 수행된연구임(2020-DD-UP-0348). 이 논문은 한국생산기술연구원 기관주요사업의 지원으로 수행한 연구임. 이 논문은 2020년도 정부(대구시)의 재원으로 대구테크노파크의 지원을 받아 수행된 연구임(202008105).

References

  1. J. Wang, L. Zheng, X. Niu, C. Zheng, Y. Wang, and F. K. Tittel, "Mid-infrared absorption-spectroscopy-based carbon dioxide sensor network in greenhouse agriculture: Development and deployment", Appl. Opt., Vol. 55, No. 25, pp. 7029-7036, 2016. https://doi.org/10.1364/AO.55.007029
  2. A. Ortiz Perez, B. Bierer, L. Scholz, J. Wollenstein, S. Palzer, "A wireless gas sensor network to monitor indoor environmental quality in schools", Sensors, Vol. 18, No.12, pp. 4345(1)-4345(13), 2018 . https://doi.org/10.3390/s18124345
  3. S.L. Wells and J. DeSimone, "CO2 technology platform: An important tool for environmental problem solving", Angew. Chem. Int. Ed, Vol. 40, No. 3, pp. 518-527, 2001. https://doi.org/10.1002/1521-3773(20010202)40:3<518::AID-ANIE518>3.0.CO;2-4
  4. T. V. Dinh, I. Y. Choi, Y. S. Son, and J. C. Kim, "A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction", Sensors Actuators, B Chem., Vol. 231, pp. 529-538, 2016. https://doi.org/10.1016/j.snb.2016.03.040
  5. L. Fleming, D. Gibson, S. Song, C. Li, and S. Reid, "Reducing N2O induced cross-talk in a NDIR CO2 gas sensor for breath analysis using multilayer thin film optical interference coatings", Surf. Coatings Technol., Vol. 336, pp. 9-16, 2018. https://doi.org/10.1016/j.surfcoat.2017.09.033
  6. R. Frodl and T. Tille, "A High-Precision NDIR CO2 gas sensor for automotive applications", IEEE Sens. J., Vol. 6, No. 6 pp. 1697-1705, 2006. https://doi.org/10.1109/JSEN.2006.884440
  7. J. Hodgkinson, R. smith, W. Ho, J. R. Saffell, R. P. Tatam, "A low cost, optically efficient carbon dioxide sensor based on non-dispersive infra-red (NDIR) measurement at 4.2 ㎛", Opt. Sens. Detect. II., Vol. 8439, p. 843919, 2012. https://doi.org/10.1117/12.922258
  8. X. Jia, J. Roels, R. Baets, and G. Roelkens, "A miniaturized, fully integrated NDIR CO2 sensor on-chip", Sensors, Vol. 21, No. 16, pp. 5347(1)-5347(14), 2021. Proc. of SPIE, vol. 8439, pp. 843919, 2012
  9. L. Kocsis, P. Herman, and A. Eke, "The modified Beer-Lambert law revisited", Phys. Med. Biol., Vol. 51, No. 5, pp. N91(1)-N91(8), 2006. https://doi.org/10.1088/0031-9155/51/5/N02