DOI QR코드

DOI QR Code

Preparation and Characterization of Pitch based Coke with Anisotropic Microstructure Derived from Pyrolysis Fuel Oil

열분해유 유래 피치로부터 이방성 미세구조 코크스 제조 및 특성 평가

  • Cho, Jong Hoon (C1 Gas & carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Ji Hong (C1 Gas & carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Young-Seak (Department of applied chemical engineering, Chungnam National University) ;
  • Im, Ji Sun (C1 Gas & carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kang, Seok Chang (C1 Gas & carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
  • 조종훈 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 김지홍 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 이영석 (충남대학교 응용화학공학부) ;
  • 임지선 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 강석창 (한국화학연구원(KRICT) C1가스탄소융합연구센터)
  • Received : 2021.10.19
  • Accepted : 2021.11.05
  • Published : 2021.12.10

Abstract

In this study, pitch was synthesized using pyrolysis fuel oil (PFO). Coke with mesophase microstructure was then prepared from the synthesized pitch and its properties were evaluated. Pitch was synthesized by poly-condensation reaction, which is an endothermic reaction at a temperature above 400 ℃ because the PFO was mainly composed of molecules with two to three aromatic rings. The Coke reactor was composed of the pretreatment reactor, preheater for applying heat energy, and coke drum for inducing microstructure of coke. Coke was prepared from synthesized pitch by controlling the temperature of the preheater to 400~490 ℃, and properties were evaluated by polarization microscope, XRD and Raman spectroscopy. The coke prepared at a preheater temperature of 460 ℃ identified flow anisotropic microstructure, and the electrical conductivity was 72.0 S/cm due to high crystallinity. And the flow anisotropic coke showed approximately 2.2 times higher electrical conductivity than that of Super-P, a conductive carbon material.

본 연구에서는 열분해유 유래 피치 합성 및 합성 피치로부터 이방성 미세구조를 갖는 코크스를 제조하고 그 특성을 평가하였다. 열분해유는 주로 방향족 고리가 2~3개로 구성된 분자로 이루어져 있어, 400 ℃ 이상의 온도에서 흡열반응인 축합중합으로 피치가 제조되었다. 코크스 반응기는 피치를 유동화 시키는 전처리 반응기, 코킹화 열에너지를 가해주는 preheater 및 코크스의 미세구조를 유도하는 코크스 드럼으로 구성되었으며, preheater의 온도를 400~490 ℃로 조절하여 제조된 피치로부터 코크스를 제조하고 편광현미경, XRD 및 Raman spectroscopy로 특성을 평가하였다. Preheater의 온도가 460 ℃에서 제조된 코크스는 이방성 미세조직이 flow 형태로 나타났으며, 높은 결정성으로 전기전도성이 72.0 S/cm이였다. 그리고 전도성 탄소 재료인 Super-P보다 대략 2.2배 높은 전기전도성을 나타냈다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 2020년도 소재부품기술개발사업 (전략핵심소재 자립화 기술개발사업, No. 20010193) 및 산업통상자원부의 2019년도 탄소산업기반조성사업 (고부가가치 인조흑연 소재기술개발, No. 20006696)으로 수행되었습니다.

References

  1. H. Wu, and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7, 414-429 (2012). https://doi.org/10.1016/j.nantod.2012.08.004
  2. E. S. Gorlanov, V. N. Brichkin, and A. A. Polyakov, Electrolytic Production of Aluminium. Review. Part 1. Conventional Areas of Development, Tsvetn. Met., 36-41 (2020).
  3. E. S. Gorlanov, V. N. Brichkin, and A. A. Polyakov, Electrolytic Production of Aluminium. Review. Part 2. Development Prospects, Tsvetn. Met., 36-41 (2020).
  4. P. K. House, M. Saberian, C. L. Briens, F. Berruti, and E. Chan, Injection of a liquid spray into a fluidized bed: particle-liquid mixing and impact on fluid coker yields, Ind. Eng. Chem. Res., 43, 5663-5669 (2004). https://doi.org/10.1021/ie034237q
  5. I. Mochida, T. Oyama, Y. Korai, and Y. Q. Fei, Study of Carbonization Using a Tube Bomb: Evaluation of Lump Needle Coke, Carbonization Mechanism and Optimization, Fuel, 67, 1171-1181 (1988). https://doi.org/10.1016/0016-2361(88)90033-6
  6. H. P. Halim, J. S. Im, and C. W. Lee, Preparation of Needle Coke from Petroleum By-Products, Carbon Lett., 14, 152-161 (2013). https://doi.org/10.5714/CL.2013.14.3.152
  7. A. Radenovic, and K.Terzic, Microstructure and physical-chemical properties of petroleum coke as carburizer, NAFTA, 3, 136-139 (2010).
  8. A. N. Scott and M. D. A. Thomas, Evaluation of fly ash from co-combustion of coal and petroleum coke for use in concrete, Aci. Mater. J., 104, 62-69, (2007).
  9. E. J. Anthony, A. P. Iribarne, and J. V. Iribarne, Fouling in a utility-scale CFBC boiler firing 100% petroleum coke, Fuel Technol., 88, 535-547, (2007). https://doi.org/10.1016/j.fuproc.2005.05.004
  10. Y. D. Park and I. Mochida, A two-stage preparation of mesophase pitch from the vacuum residue of FCC decant oil, Carbon, 27, 925-929 (1989). https://doi.org/10.1016/0008-6223(89)90043-2
  11. S. Eser, R. G. Jekins, F. J. Derbyshire, and M. Malladi, Carbonization of coker feedstocks and their fractions, Carbon, 24, 77-82 (1986). https://doi.org/10.1016/0008-6223(86)90213-7
  12. P. J. Ellis and A. P. Christopher, Tutorial: Delayed coking fundamentals, American Institute of Chemical Engineers (1998).
  13. I. Mochida, Y. Korai, T. Oyama, Y. Nesumi, and Y. Todo, Carbonization in the tube bomb leading to needle coke: I. Cocarbonization of a petroleum vacuum residue and a FCC-decant oil into better needle coke, Carbon, 27, 359-365 (1989). https://doi.org/10.1016/0008-6223(89)90067-5
  14. I. Mochida, Y. Q. Fei, Y. Korai, K. Fujimoto, and R. Yamashita, Carbonization in the tube bomb leading to needle coke: III. Carbonization properties of several coal-tar pitches, Carbon, 27, 375-380 (1989). https://doi.org/10.1016/0008-6223(89)90069-9
  15. I. Mochida, T. Oyama, and Y. Korai, Formation scheme of needle coke from FCC-decant oil, Carbon, 26, 49-55 (1988). https://doi.org/10.1016/0008-6223(88)90008-5
  16. Y. Zhu, C. Zhao, Y. Xu, C. Hu, and X. Zhao, Preparation and Characterization of Coal Pitch-Based Needle Coke (Part I): The Effects of Aromatic Index (fa) in Refined Coal Pitch, Energy Fuels, 33, 3456-3464 (2019). https://doi.org/10.1021/acs.energyfuels.9b00160
  17. Y. Zhu, C. Hu, Y. Xu, C. Zhao, X. Tin, and X. Zhao, Preparation and Characterization of Coal Pitch-Based Needle Coke (Part II): The Effects of β Resin in Refined Coal Pitch, Energy Fuels, 34, 2126-2134 (2020). https://doi.org/10.1021/acs.energyfuels.9b03406
  18. Y. Zhu, H. Liu, Y. Xu, C. Hu, C. Zhao, J. Cheng, X. Chen, and X. Zhao, Preparation and Characterization of Coal Pitch-Based Needle Coke (Part III): The Effects of Quinoline Insoluble in Coal Tar Pitch, Energy Fuels, 34, 8676-8684 (2020). https://doi.org/10.1021/acs.energyfuels.0c01049
  19. L. Li, X. Lin, Y. Zhang, J. Dai, D. Xu, and Y. Wang, Characteristics of the mesophase and needle coke derived from the blended coal tar and biomass tar pitch, J. Anal. Appl. Pyrolysis, 150, 104889 (2020). https://doi.org/10.1016/j.jaap.2020.104889
  20. I. F. E. Alexander, X-ray Diffraction Methods in Polymer Science, John Wiley & Sons, Inc., (1969).
  21. D. S. Knight, and W. B. White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res., 4, 385-393 (1989). https://doi.org/10.1557/JMR.1989.0385
  22. Y. D. Park, and I. Mochida, A two-stage preparation of mesophase pitch from the vacuum residue of FCC decant oil, Carbon, 27, 925-929 (1989). https://doi.org/10.1016/0008-6223(89)90043-2
  23. I. Mochida, K. Shimizu, Y. Korai, Y. Sakai, S. Fujiyama, H. Toshima, and T. Hono, Mesophase pitch catalytically prepared from anthracene with HF/BF3, Carbon, 30, 55-61 (1992). https://doi.org/10.1016/0008-6223(92)90106-7
  24. J. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics. McGraw-Hill Education, (2004).