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EVALUATIONS OF THE ROGERS-RAMANUJAN CONTINUED

FRACTION BY THETA-FUNCTION IDENTITIES

Dae Hyun Paek

Abstract. In this paper, we use theta-function identities involving parameters l5,n,

l′5,n, and l′5,4n to evaluate the Rogers-Ramanujan continued fractions R(e−2π
√

n/20)

and S(e−π
√

n/5) for some positive rational numbers n.

1. Introduction

The Rogers-Ramanujan continued fractions R(q) and S(q), for |q| < 1, are defined
by

R(q) =
q1/5

1 +

q

1 +

q2

1 +

q3

1 + · · ·
and

S(q) = −R(−q).
In his first two letters to G.H. Hardy, S. Ramanujan asserted that

R(e−2π) =

√
5 +

√
5

2
−

√
5 + 1

2
,

S(e−π) =

√
5−

√
5

2
−

√
5− 1

2
,

and

R(e−2π
√
5) =

√
5

1 +

(
53/4

(√
5−1
2

)5/2
− 1

)1/5
− 1 +

√
5

2
.
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See [4, 5] for more details about the proofs and historical remarks of these evalu-

ations. Further explicit evaluations of R(e−2π
√
n) and S(e−π

√
n) for some positive

rational numbers n were given in [4, 5, 12, 13]. Ramanathan [8, 9, 10] evaluated

R(e−2π
√
n) for n = 1, 2, 5, 2

5 ,
17
5 and S(e−π

√
n) for n = 1, 5, 3

5 ,
3
7 ,

23
5 . Ramanathan

[11] also evaluated R(e−2π
√
n) for n = 2

5 ,
17
5 and S(e−π

√
n) for n = 7

5 ,
23
5 by using

Kronecker’s limit formula. Berndt and Chan [4] established values of R(e−2π
√
n) for

n = 4, 9, 16, 64 and S(e−π
√
n) for n = 3

5 ,
7
5 ,

1
15 ,

1
35 by employing an eta-function iden-

tity. Meanwhile, Chan [6] evaluated S(e−π
√
3) by using a modular equation. Berndt,

Chan, and Zhang [5] derived formulas for the explicit evaluations of R(e−2π
√
n) and

S(e−π
√
n) for positive rational numbers n in terms of Ramanujan-Weber class invari-

ants. In particular, they determined the values of R(e−6π) and S(e−π
√
n) for n = 9,

1
5 ,

3
5 ,

9
5 ,

11
5 ,

13
5 ,

29
5 ,

41
5 ,

53
5 ,

89
5 ,

101
5 .

Yi [13] established some formulas and found values of R(e−2π
√
n) and S(e−π

√
n)

by using modular equations of degrees 5 or 25. In addition, Yi [13] employed modular
equations of degree 1, p, 5, and 5p for any positive integer p so that she was able
to compute R(e−2π

√
n) for n = 1, 2, 3, 4, 9, 16, 1

2 ,
1
3 ,

1
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

7
5 ,

8
5 ,

9
5 ,

1
9 ,

1
10 ,

1
15 ,

1
16 ,

1
20 ,

1
25 ,

1
35 ,

1
40 ,

1
45 and S(e−π

√
n) for n = 1, 3, 9, 27, 1

3 ,
1
5 ,

3
5 ,

7
5 ,

9
5 ,

1
9 ,

1
15 ,

1
25 ,

1
27 ,

1
35 ,

1
45 . Recently, Paek and Yi [7] evaluated R(e−2π

√
n) and S(e−π

√
n) for n = 4

5 ,
16
5 by using modular equations of degree 5. Saikia [12] evaluated explicit values of

R(e−2π
√
n) for n = 1, 4, 1

5 ,
2
5 ,

3
5 ,

9
5 ,

1
10 and S(e−π

√
n) for n = 1, 1

5 ,
3
5 ,

9
5 by using

parametrization of Ramanujan’s theta-functions.
In this paper, we use theta-function identities involving parameters l5,n, l

′
5,n,

and l′5,4n to show how to evaluate R(e−2π
√
n) for n = 3

5·4m , 9
5·4m , 1

15·4m , 1
45·4m and

S(e−π
√
n) for n = 3

5·4m−1 ,
9

5·4m−1 ,
1

15·4m−1 ,
1

45·4m−1 , where m is any positive integer.
Furthermore, we establish explicit evaluations of these for m = 1, 2, or 3.

Ramanujan’s theta-function ψ is defined by

ψ(q) =

∞∑
n=0

qn(n+1)/2,

where |q| < 1.
Recall the parameters lk,n and l′k,n for the theta-function ψ introduced in [14].

For any positive real numbers k and n, define lk,n and l′k,n by

(1.1) lk,n =
ψ(−q)

k1/4q(k−1)/8ψ(−qk)
and

(1.2) l′k,n =
ψ(q)

k1/4q(k−1)/8ψ(qk)
,

where q = e−π
√
n/k.
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We employ the following formulas in [12, Theorem 3.1] to evaluate R(e−2π
√
n/20)

and S(e−π
√
n/5) in terms of l′5,n and l5,n, respectively.

(1.3)
1

R5(e−2π
√
n/20)

− 11−R5(e−2π
√
n/20) =

√
5 l′25,n

(√
5 l′25,n − 5

√
5 l′25,n − 1

)2

and

(1.4)
1

S5(e−π
√
n/5)

+ 11− S5(e−π
√
n/5) =

√
5 l25,n

(√
5 l25,n + 5

√
5 l25,n + 1

)2

.

From (1.3) and (1.4), we have

(1.5) R5(e−2π
√
n/20) =

√
a2 + 1− a,

where

2a = 11 +
√
5 l′25,n

(√
5 l′25,n − 5

√
5 l′25,n − 1

)2

and

(1.6) S5(e−π
√
n/5) =

√
b2 + 1− b,

where

2b = −11 +
√
5 l25,n

(√
5 l25,n + 5

√
5 l25,n + 1

)2

.

Consequently, in order to compute R(e−2π
√
n/20) and S(e−π

√
n/5), it suffices to

evaluate l′25,n and l25,n, respectively. Thus, in this paper, we employ theta-function

identities involving l5,n, l
′
5,n, and l

′
5,4n to find some new explicit values of the Rogers-

Ramanujan continued fraction.

2. Evaluations of l5,n and l′5,n

In this section, we compute l′25,n and l25,n for some positive rational numbers n to

evaluate R(e−2π
√
n/20) and S(e−π

√
n/5). We begin by recalling the known values

of l5,3, l5,1/3, l5,9, and l5,1/9 in [14] which will play key roles in evaluating the
Rogers-Ramanujan continued fraction later on.

Lemma 2.1 ([14, Theorem 4.8]). We have

(i) l5,3 =
√
2 +

√
5 ,

(ii) l5,1/3 =
√
−2 +

√
5 ,

(iii) l5,9 =
1 +

√
3√

5−
√
3
,
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(iv) l5,1/9 =

√
5−

√
3

1 +
√
3
.

Note that the values of (i) and (ii) in Lemma 2.1 were given in [14] as follow:

l5,3 = (38 + 17
√
5)1/6 and l5,1/3 = (−38 + 17

√
5)1/6 .

We now need a couple of theta-function identities: one shows a relation between
l′5,n and l′5,4n and the other shows a relation between l′5,n and l5,n for any positive
rational number n.

Lemma 2.2 ([7, Corollary 3.8]). For every positive real number n, we have

(2.1)
√
5

(
l′25,n +

1

l′25,n

)
=

(
l′5,n
l′5,4n

)2

+

(
l′5,4n
l′5,n

)2

+ 4

Identity (2.1) follows from a modular equation of degree 5 in [7] such as P 2+
5

P 2
=(

P

Q

)2

+

(
Q

P

)2

+ 4, where P = ψ(q)

q1/2ψ(q5)
and Q = ψ(q2)

qψ(q10)
.

Lemma 2.3 ([7, Corollary 3.12]). For every positive real number n, we have

(2.2)
(
l′25,n − l25,n −

√
5
)( 1

l′25,n
− 1

l25,n
−
√
5

)
= 1

Identity (2.2) follows from a modular equation of degree 5 in [7] such as(
P 2 −Q2 − 5

)( 1

P 2
− 1

Q2
− 1

)
= 1,

where P = ψ(q)

q1/2ψ(q5)
and Q = ψ(−q)

q1/2ψ(−q5) .

We are in position to evaluate l′25,n for n = 3, 1
3 ,

3
4 ,

1
12 ,

3
16 , and

1
48 .

Theorem 2.4. We have

(i) l′25,3 =
1

2
(2 +

√
3 )(1 +

√
5 ) ,

(ii) l′25,1/3 =
1

2
(2 +

√
3 )(−1 +

√
5 ) ,

(iii) l′25,3/4 =
4 +

√
2 +

√
30

2−
√
3 +

√
15
,

(iv) l′25,1/12 =
4−

√
2 +

√
30

−2 +
√
3 +

√
15
.

(v) l′25,3/16 =
4(2 +

√
10 ) + 2

√
12 + 33

√
10 +

√
270(13− 4

√
10)

17 + 17
√
2 + 9

√
3− 7

√
5 + 9

√
6− 5

√
10− 3

√
15− 3

√
30
,
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(vi) l′25,1/48 =
4(2 +

√
10 ) + 2

√
12 + 33

√
10−

√
270(13− 4

√
10)

−17 + 17
√
2− 9

√
3− 7

√
5 + 9

√
6 + 5

√
10− 3

√
15 + 3

√
30
.

Proof. For (i), let n = 3 in (2.2). Putting l′25,3 = x and l5,3 =
√

2 +
√
5 in Lemma

2.1(i), we find that

2x2 − 4(1 +
√
5 )x+ 3 +

√
5 = 0 .

Solving the equation for x and using x > 1, we complete the proof.

For (iii), let n = 3
4 in (2.1). Putting l′25,3/4 = x and l′25,3 =

1

2
(2 +

√
3 )(1 +

√
5 )

obtained in (i), we deduce that

(2−
√
3 +

√
15 )x2 − 8x− 2−

√
3−

√
15 = 0.

Solving the last equation for x and using x > 1, we complete the proof.
The proofs of (ii), (iv), (v), and (vi) are similar to those of (i) or (iii). �

Remark 1. Letting n = 3
64 and 1

192 in (2.1) and using the value l′25,3/16 and l′25,1/48 in

Theorem 2.4(v) and (vi), respectively, we can also evaluate l′25,3/64 and l
′2
5,1/192. Hence,

by the same argument, we can evaluate l′25,3/4m and l′25,1/3·4m for every nonnegative

integer m.

We now evaluate l25,3/4 and l25,1/12.

Theorem 2.5. We have

(i) l25,3/4 =
4 +

√
2− 5

√
3− 2

√
5 +

√
15 +

√
30

4− 2
√
3 + 2

√
15

+

√
26− 84

√
2 + 18

√
3 + 63

√
5− 47

√
6−

√
10 + 38

√
15

(2 +
√
3)
√
2 + 6

√
5 + 4

√
15

,

(ii) l25,1/12 =
4−

√
2− 5

√
3 + 2

√
5−

√
15 +

√
30

−4 + 2
√
3 + 2

√
15

+

√
−26− 84

√
2− 18

√
3 + 63

√
5− 47

√
6 +

√
10 + 38

√
15

(2 +
√
3)
√
−2 + 6

√
5 + 4

√
15

.

Proof. The results follow directly from (2.2) and Theorem 2.4(ii) and (iv) with the
help of Mathematica. �

Remark 2. Letting n = 3
16 and 1

48 in (2.2) and using the value l′25,3/16 and l′25,1/48
in Theorem 2.4(v) and (vi), respectively, we can also evaluate l25,3/16 and l25,1/48. By

the same argument as before, we are able to evaluate l25,3/4m and l25,1/3·4m for every

positive integer m.

We now evaluate l′25,n for n = 9, 9
4 ,

1
9 , and

1
36 .
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Theorem 2.6. We have

(i) l′25,9 = (2 +
√
3 )
(
2 +

√
5 + 2

√
2 +

√
5
)
,

(ii) l′25,9/4 =
(2 +

√
3 )
(
5 + 2

√
2 +

√
5 +

√
6 + 6

√
5
)

√
2
(
−2 +

√
5 +

√
15 + 2

√
2 +

√
5
) ,

(iii) l′25,1/9 = (2−
√
3 )
(
2 +

√
5 + 2

√
2 +

√
5
)
,

(iv) l′25,1/36 =
(2−

√
3 )
(
5 + 2

√
2 +

√
5−

√
6 + 6

√
5
)

√
2
(
−2 +

√
5−

√
15 + 2

√
2 +

√
5
) .

Proof. For (i), let n = 3 in (2.2). Putting l′25,9 = x and l5,9 =
1 +

√
3√

5−
√
3
in Lemma

2.1(iii), we find that

x2 − 2(2 +
√
5 )x+ 2 +

√
3 = 0 .

Solving the equation for x and using x > 1, we complete the proof.
For (ii), let n = 9

4 in (2.1). Putting l′25,9/4 = x and the value l′25,9 obtained in (i),

we deduce that

−2 +
√
5 +

√
15 + 2

√
2 +

√
5

2 +
√
3

x2 − 4x− 2−
√
5 +

√
15 + 2

√
2 +

√
5

2−
√
3

= 0 .

Solve the last equation for x with the help of Mathematica and use x > 1 to complete
the proof.

The proofs of (iii) and (iv) are similar to those of (i) and (ii), respectively. �

Remark 3. Letting n = 9
16 and 1

144 in (2.1) and using the value of l′25,9/4 and l′25,1/36
in Theorem 2.6(ii) and (iv), respectively, we can also evaluate l′25,9/16 and l′25,1/144.

Hence we can evaluate l′25,9/4m and l′25,1/9·4m for every nonnegative integer m.

We end this section by evaluating l25,9/4 and l25,1/36.

Theorem 2.7. We have

(i) l25,9/4 =
(c− 4)

√
c+

√
(c− 4)(c2 + 4)

2
√
5c

, where

c = −1 +

√
5 (2 +

√
3 )
(
5 + 2

√
2 +

√
5 + 2

√
6 + 6

√
5
)

√
2
(
−2 +

√
5 +

√
15 + 2

√
2 +

√
5
) ,

(ii) l25,1/36 =
(c− 4)

√
c+

√
(c− 4)(c2 + 4)

2
√
5c

, where

c = −1 +

√
5 (2−

√
3 )
(
5 + 2

√
2 +

√
5− 2

√
6 + 6

√
5
)

√
2
(
−2 +

√
5−

√
15 + 2

√
2 +

√
5
) .



EVALUATIONS OF R(q) BY THETA-FUNCTION IDENTITIES 383

Proof. The results follow directly from (2.2) and Theorem 2.6(ii) and (iv) with the
help of Mathematica. �

Remark 4. As mentioned in Remark 3, if we evaluate l′25,9/16 and l′25,1/144, then we

have l25,9/16 and l25,1/144. Thus we are able to compute l25,9/4m and l25,1/9·4m for every

positive integer m.

3. Evaluations of R(q) and S(q)

In view of Remark 1, we can evaluate R(e−2π
√
n) for n = 3

5·4m and 1
15·4m , where

m is any positive integer. We evaluate the cases for m = 1, 2, and 3.

Theorem 3.1. We have

(i) R5(e−2π
√

3/20)

=
57− 50

√
3 + 16

√
5− 36

√
15 +

√
15(2105− 760

√
3 + 842

√
5− 380

√
15)

1 + 3
√
5 + 2

√
15

,

(ii) R5(e−2π
√

1/60)

=
57− 50

√
3− 16

√
5 + 36

√
15−

√
15(2105− 760

√
3− 842

√
5 + 380

√
15)

1− 3
√
5− 2

√
15

,

(iii) R5(e−2π
√

3/80) =
√
a2 + 1− a, where

a =
11

2
+

5
√
5

2

(
4 +

√
2 +

√
30

2−
√
3 +

√
15

)(
4 +

√
2− 5

√
3− 2

√
5 +

√
15 +

√
30

2−
√
3− 4

√
5− 5

√
6−

√
10 +

√
15

)2

,

(iv) R5(e−2π
√

1/240) =
√
a2 + 1− a, where

a =
11

2
− 5

√
5

2

(
4−

√
2 +

√
30

2−
√
3−

√
15

)(
4−

√
2− 5

√
3 + 2

√
5−

√
15 +

√
30

2−
√
3 + 4

√
5 + 5

√
6−

√
10−

√
15

)2

.

(v) R5(e−2π
√

3/320) =
−2 + (a2 + 2a+ 2)(

√
a2 + 1− a)

a2
, where

a = −1

2
+

10
√
2 + 4

√
5 +

√
5

√
12 + 33

√
10 +

√
270(13− 4

√
10)

17 + 17
√
2 + 9

√
3− 7

√
5 + 9

√
6− 5

√
10− 3

√
15− 3

√
30
,

(vi) R5(e−2π
√

1/960) =
−2 + (a2 + 2a+ 2)(

√
a2 + 1− a)

a2
, where

a = −1

2
+

10
√
2 + 4

√
5 +

√
5

√
12 + 33

√
10−

√
270(13− 4

√
10)

−17 + 17
√
2− 9

√
3− 7

√
5 + 9

√
6 + 5

√
10− 3

√
15 + 3

√
30
.

Proof. The results follow directly from (1.5) and Theorem 2.4 with the help of Math-
ematica. �
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In view of Remark 2, we can evaluate S(e−π
√
n) for n = 3

5·4m−1 and 1
15·4m−1 , where

m is any positive integer. We evaluate the cases for m = 1 and 2.

Theorem 3.2. We have

(i) S5(e−π
√

3/5) =
1

4

(
−3− 5

√
5 +

√
30(5 +

√
5 )

)
,

(ii) S5(e−π
√

1/15) =
1

4

(
−3 + 5

√
5 +

√
30(5−

√
5 )

)
,

(iii) S5(e−π
√

3/20) =
2 + (b2 − 2b+ 2)(

√
b2 + 1− b)

b2
, where

b =
1

2
+

√
5 (4 +

√
2− 5

√
3− 2

√
5 +

√
15 +

√
30)

4(2−
√
3 +

√
15)

+

√
5(26− 84

√
2 + 18

√
3 + 63

√
5− 47

√
6−

√
10 + 38

√
15)

(4 + 2
√
3)
√
2 + 6

√
5 + 4

√
15

,

(iv) S5(e−π
√

1/60) =
2 + (b2 − 2b+ 2)(

√
b2 + 1− b)

b2
, where

b =
1

2
+

√
5 (4−

√
2− 5

√
3 + 2

√
5−

√
15 +

√
30)

4(−2 +
√
3 +

√
15)

+

√
5(−26− 84

√
2− 18

√
3 + 63

√
5− 47

√
6 +

√
10 + 38

√
15)

(4 + 2
√
3)
√
−2 + 6

√
5 + 4

√
15

.

Proof. The results are immediate consequences of (1.6), Lemma 2.1(i) and (ii), and
Theorem 2.5 with the help of Mathematica. �

See [13, Corollary 4.12(i) and (ii)] for alternative proofs of Theorem 3.2(i) and
(ii), respectively.

In view of Remark 3, we are able to evaluate R(e−2π
√
n) for n = 9

5·4m and 1
45·4m ,

where m is any positive integer. We evaluate the cases for m = 1 and 2.

Theorem 3.3. We have

(i) R5(e−2π
√

9/20) =
√
a2 + 1− a, where

a =
11

2
+

5

2

(
5 + 14

√
5− 10

√
2 + 5

√
5

54− 25
√
3 + 16

√
5− 12

√
15

)
,

(ii) R5(e−2π
√

1/180) =
√
a2 + 1− a, where

a =
11

2
+

5

2

(
5 + 14

√
5− 10

√
2 + 5

√
5

54 + 25
√
3 + 16

√
5 + 12

√
15

)
,

(iii) R5(e−2π
√

9/80) =
−2 + (a2 + 2a+ 2)(

√
a2 + 1− a)

a2
, where



EVALUATIONS OF R(q) BY THETA-FUNCTION IDENTITIES 385

a = −1

2
+

√
5 (2 +

√
3 )
(
5 + 2

√
2 +

√
5 +

√
6 + 6

√
5
)

2
√
2
(
−2 +

√
5 +

√
15 + 2

√
2 +

√
5
) ,

(iv) R5(e−2π
√

1/720) =
−2 + (a2 + 2a+ 2)(

√
a2 + 1− a)

a2
, where

a = −1

2
+

√
5 (2−

√
3 )
(
5 + 2

√
2 +

√
5−

√
6 + 6

√
5
)

2
√
2
(
−2 +

√
5−

√
15 + 2

√
2 +

√
5
) .

Proof. The results follow directly from (1.5) and Theorem 2.4. We usedMathematica
to verify (i)–(iv). �

In view of Remark 4, we can evaluate S(e−π
√
n) for n = 9

5·4m−1 and 1
45·4m−1 , where

m is any positive integer. We evaluate the cases for m = 1 and 2.

Theorem 3.4. We have

(i) S5(e−π
√

9/5)

=
22− 65

√
5− 32

√
15 + 2

√
5(1850 + 1040

√
3− 143

√
5− 70

√
15 )

4 +
√
15

,

(ii) S5(e−π
√

1/45)

=
22− 65

√
5 + 32

√
15 + 2

√
5(1850− 1040

√
3− 143

√
5 + 70

√
15 )

4−
√
15

,

(iii) S5(e−π
√

9/20) =
2 + (b2 − 2b+ 2)(

√
b2 + 1− b)

b2
, where

b = −1

2
+
c
√
c+

√
(c− 4)(c2 + 4)

4
√
c

and

c = −1 +

√
5 (2 +

√
3 )
(
5 + 2

√
2 +

√
5 +

√
6 + 6

√
5
)

√
2
(
−2 +

√
5 +

√
15 + 2

√
2 +

√
5
) ,

(iv) S5(e−π
√

1/180) =
2 + (b2 − 2b+ 2)(

√
b2 + 1− b)

b2
, where

b = −1

2
+
c
√
c+

√
(c− 4)(c2 + 4)

4
√
c

and

c = −1 +

√
5 (2−

√
3 )
(
5 + 2

√
2 +

√
5−

√
6 + 6

√
5
)

√
2
(
−2 +

√
5−

√
15 + 2

√
2 +

√
5
) .

Proof. The results follow from (1.6), Lemma 2.1(iii) and (iv), and Theorem 2.7. We
used Mathematica to verify (i)–(iv). �
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