A WEIERSTRASS SEMIGROUP AT A GENERALIZED FLEX ON A PLANE CURVE

SEON JEONG KIM ^a AND EUNJU KANG ^{b,*}

ABSTRACT. We consider a Weierstrass semigroup at a generalized flex on a smooth plane curve. We find the candidates of a Weierstrass semigroup at a 2-flex of higher multiplicity on a smooth plane curve of degree $d \geq 5$, and give some examples to show the existence of them.

1. Introduction and Preliminaries

Let C be a smooth complex projective plane curve of degree $d \geq 4$. Let P be a point on C. We divide the lines on the plane into three types according to the intersection multiplicity at P:

- (1) $I(C \cap \ell_0, P) = 0$;
- (2) $I(C \cap \ell_1, P) = 1$;
- (3) $I(C \cap \ell_2, P) \ge 2$;

where $I(C \cap \ell, P)$ means the intersection multiplicity of C and ℓ at P. We call ℓ_2 the tangent line to C at P and denote it by T_PC . If $I(C \cap T_PC, P) > 2$, then we call P the inflection point or a flex on C. One can generalize the notion of this concept by replacing the lines by curves of some given degree m. At each point P, for each natural number m < d, there exists a curve F_m of degree m which have the highest order of contact with C. We call such a curve F_m as an osculating curve of degree m at P to C. Note that an osculating curve F_m need not be irreducible. We are interested in the case that F_m is irreducible. The point P on C is called an m-flex if F_m is irreducible and $I(C \cap F_m, P) > \frac{m(m+3)}{2}$ where F_m is an osculating curve of

Received by the editors September 13, 2021. Accepted October 20, 2021.

 $^{2010\} Mathematics\ Subject\ Classification.\ 14H55,\ 14H51,\ 14H45,\ 14G50.$

Key words and phrases. order sequence, Weierstrass point, Weierstrass semigroup, smooth plane curve, inflection point, 2-flex, m-flex.

^{*}Corresponding author.

degree m. Note that the number $\frac{m(m+3)}{2}$ is the dimension of the system of curves of degree m. Obviously, a 1-flex means a flex in our notation.

In this paper, we consider a Weierstrass semigroup at 2-flexes, which is also known as sextactic points.

The following are well known;

Lemma 1.1. On a smooth plane curve of degree $d \ge 4$, the canonical series is cut out by the system of all curves of degree d-3.

Lemma 1.2 ([5], Bertini's theorem). The generic element of a linear system is smooth away from the base locus of the system.

Lemma 1.3 ([2], Bezout's theorem). Let C_m and C_n be plane curves of degree m and n, respectively. If they have no common component, then we have

$$\sum_{P \in C_m \cap C_n} I(C_m \cap C_n) = mn.$$

Lemma 1.4 ([4], Namba's lemma). Let C_1 , C_2 and C be three plane curves, and let P be a smooth point on C. If $I(C \cap C_1, P) \geq m$ and $I(C \cap C_2, P) \geq m$, then $I(C_1 \cap C_2, P) \geq m$.

Corollary 1.5. Let C be a plane curve and P a smooth point on C. Let C_1 and C_2 be plane curves defined by the polynomial h_1 and h_2 , respectively. If $\min\{I(C \cap C_1, P), I(C \cap C_2, P)\} > (\deg h_1)(\deg h_2)$ and h_2 is irreducible, then h_1 is a multiple of h_2 .

Proof. By Namba's lemma, $I(C_1 \cap C_2, P) \ge \min\{I(C \cap C_1, P), I(C \cap C_2, P)\} > (\deg h_1)(\deg h_2)$. By Bezout's theorem, C_1 and C_2 have a common component. Since C_2 is irreducible, C_2 is the common component of them.

For a point P on a smooth curve C of genus g, P is a Weierstrass point if the gap sequence $G_P = \{n \in \mathbb{N}_0 \mid \text{there exists a canonical divisor } K \text{ with } I(C \cap K, P) = n-1\}$ is different from $\{1,2 \longrightarrow g\}([1])$. We call the sequence $\{I(C \cap K, P) \mid K \text{ is a canonical divisor of } C\}$ as an order sequence of canonical divisors at P. Thus P is a Weierstrass point if the order sequence of canonical divisors at P is not $\{0,1 \longrightarrow g-1\}$. Recall that there are only finite number of Weierstrass points on C, which means that the order sequence of canonical divisors at a point is exactly $\{0,1 \longrightarrow g-1\}$ except for a finite number of points, i.e., Weierstrass points. For a

smooth plane curve C of degree d, by Lemma 1.1, the order sequence of canonical divisors at P is the set $\{I(C \cap f_{d-3}, P) \mid f_{d-3} \text{ is a polynomial of degree } d-3\}.$

2. A 2-flex which is a Weierstrass Point

Let C be a smooth plane curve of degree $d \geq 4$. For each natural number $1 \leq k \leq d-1$, the number $i_k := i_k(P)$ means the number $I(C \cap F_k, P)$ where F_k is the osculating curve of degree k at P to C.

Lemma 2.1. Let C be a smooth plane curve of degree $d \ge 4$ and P a 2-flex on C. Then $i_1 = 2$ and $i_2 > 5$.

Proof. Since P is a 2-flex, the osculating conic F_2 at P to C is irreducible and $i_2 = I(C \cap F_2, P) > 5$. Let ℓ_2 be the tangent line to C at P. Then $I(C \cap \ell_2, P) \geq 2$. If $I(C \cap \ell_2, P) \geq 3$, then $I(F_2 \cap \ell_2, P) \geq 3 > (\deg F_2)(\deg \ell_2)$, F_2 contains ℓ_2 as a component, which is a contradiction since F_2 is an irreducible conic. Thus $i_1 = I(C \cap \ell_2, P) = 2$.

We are interested in a 2-flex point P which is a Weierstrass point.

If d = 4, then the genus of C is 3 and the lines cut out the canonical series whose order sequence at P is $\{0, 1, 2\}$. Thus P is not a Weierstrass point. Thus we consider only $d \geq 5$.

Remark 2.2. If $d \geq 5$ and m = 2 then F_2 is unique. If F_2 and G_2 are two different osculating conics to C at P then $\min\{I(C \cap F_2, P), I(C \cap G_2, P)\} > 5$ so $I(F_2 \cap G_2, P) > 5$ by Nambs's lemma. But $I(F_2 \cap G_2, P) \leq 4$ by Bertini's theorem, which is a contradiction.

Theorem 2.3. Let C be a smooth plane curve of degree $d \geq 5$ and P a 2-flex on C. If $i_2(P) = I(C \cap F_2, P) \geq 2\lfloor \frac{d}{2} \rfloor + 2$ for an irreducible conic F_2 , then P is a Weierstrass point of C.

Proof. It suffices to show that there exists a polynomial f_{d-3} such that $I(C \cap f_{d-3}, P) \ge g = \frac{(d-1)(d-2)}{2}$.

When d is odd, we let d=2k+1, $k \geq 2$. Since d-3=2(k-1), the degree of F_2^{k-1} is a polynomial of degree d-3. We have

$$I(C \cap F_2^{k-1}, P) \ge (k-1)(2\lfloor \frac{d}{2} \rfloor + 2) = \frac{d-3}{2}(d+1) \ge g.$$

When d is even, we let d = 2k, $k \ge 3$. Since d - 3 = 2(k - 2) + 1, the degree of $F_2^{k-2}\ell_2$ is a polynomial of degree d - 3, where ℓ_2 is the tangent line to C at P. We have

$$I(C \cap F_2^{k-2}\ell_2, P) \ge (k-2)(2\lfloor \frac{d}{2} \rfloor + 2) + 2 = (\frac{d}{2} - 2)(d+2) + 2 \ge g,$$

since $d \ge 6$ for even d.

Thus P is a Weierstrass point in both cases.

In next theorem, we give the order sequence at P when $i_2(P)$ is a high value, i.e., $i_2(P) \ge 2(d-3) + 1$.

Theorem 2.4. Let C be a smooth plane curve of degree $d \ge 5$ and P a 2-flex point on C. If $i_2(P) \ge 2(d-3)+1$, then the order sequences at P is

$$\bigcup_{0 \le \alpha \le \frac{d-3}{2}} \{ \alpha i_2 \longrightarrow \alpha i_2 + 2(d-2\alpha-3) \}.$$

Moreover, such a curve C and a point $P \in C$ exist, indeed the following curve and the point P satisfy the conditions.

$$C_d: \ \lambda_1(y-x^2) + \lambda_2(y-x^2)(x^{d-2} + y^{d-2}) + \lambda_3 y^d + \lambda_4 x^{i_2 - 2\lfloor \frac{i_2}{2} \rfloor} y^{\lfloor \frac{i_2}{2} \rfloor} \ and \ P = (0,0).$$

Proof. Note that the canonical series is cut out by the curves of degree d-3. First, we obtain the orders at P using polynomials of the form $F_2^{\alpha}\ell_0^{\beta_0}\ell_1^{\beta_1}\ell_2^{\beta_2}$ with $2\alpha + \beta_0 + \beta_1 + \beta_2 = d-3$. Here ℓ_2 is the tangent line at P to C, ℓ_0 is any line not passing through P, and ℓ_1 is any line, distinct from ℓ_2 , passing through P. We have $I(F_2^{\alpha}\ell_0^{\beta_0}\ell_1^{\beta_1}\ell_2^{\beta_2} \cap C, P) = \alpha i_2 + \beta_1 + 2\beta_2$. For fixed α , $0 \le \alpha \le \frac{d-3}{2}$, we obtain

$$\{I(F_2^{\alpha}\ell_0^{\beta_0}\ell_1^{\beta_1}\ell_2^{\beta_2}\cap C, P) \mid \beta_0+\beta_1+\beta_2=d-3-2\alpha\} = \{\alpha i_2 \longrightarrow \alpha i_2 + 2(d-3-2\alpha)\}.$$

Since $i_2(P) \ge 2(d-3) + 1$, we can check that

$$\bigcup_{0 \le \alpha \le \frac{d-3}{2}} \{ \alpha i_2 \longrightarrow \alpha i_2 + 2(d-3-2\alpha) \}$$

is the disjoint union. Hence the cardinality of it is

$$\sum_{0 \le \alpha \le \frac{d-3}{2}} (2(d-3-2\alpha)+1) = \frac{(d-1)(d-2)}{2} = g$$

where q is the genus of C. Thus it is exactly the order sequence of the point P.

Since the order sequence is completely determined by the values $i_1 = 2$ and $i_2 \ge 2(d-3)+1$, it suffices to find a smooth curve of degree d admitting such values. In fact, by the Bertini's theorem, C_d is smooth for general nonzero λ_i 's. If we let

 $F_2 = y - x^2$, then F_2 is the osculating conic and $I(F_2 \cap C_d, P) = i_2$. Thus C_d is a desired curve.

3. At a 2-flex of Order of Contact 2(d-3)

In the Theorem 2.4, if $i_2(P) \leq 2(d-3)$, then we check that $\bigcup_{0 \leq \alpha \leq \frac{d-3}{2}} \{\alpha i_2 \rightarrow \alpha i_2 + 2(d-2\alpha-3)\}$ is not a disjoint union, by counting the elements of sets. So the number of orders at P appeared in the union is less than the genus g of C. Then we must find more orders at P not appeared in the union.

In this section, we consider the case $i_2(P) = 2(d-3)$. In this case, the cardinality of the union is exactly g-1 because the last element 2(d-3) of the first set and the first element i_2 in the second set are coincide. Thus we must find one more order at P.

For d = 5, 2(d - 3) = 4 can not be i_2 since $i_2 > 5$.

For d = 6, we have $i_2 = 2(d - 3) = 6$. From [3], we obtain the order sequences $\{0 \longrightarrow 8\} \cup \{r\}$ with $r \in \{10 \longrightarrow 16\} \cup \{18\}$. Here $r = i_3$. Moreover, they proved that i_3 can not be 17.

So we deal with the cases for d = 7.8 and 9 in this section.

3.1. On a curve of degree 7 Let d = 7 and $i_2 = 2(d-3) = 8$. In this case the orders determined by lines and the power of osculating conic are

$$\{0 \longrightarrow 8\} \cup \{8 \longrightarrow 12\} \cup \{16\} = \{0 \longrightarrow 12\} \cup \{16\}$$

and its cardinality is g-1=14. Hence we need to find one more order.

Lemma 3.1. We have $i_1 = 2$, $i_3 = 10$, and $i_4 \ge 16$.

Proof. By Lemma 2.1, $i_1 = 2$.

Let ℓ_2 be the tangent line to C at P. Since $I(C \cap F_2\ell_2, P) = 10$, we have $i_3 \geq 10$. Suppose that $i_3 > 10$ and let f_3 be a cubic such that $I(C \cap f_3, P) = i_3 > 10$. By Corollary 1.5, $f_3 = F_2\ell$ for some line ℓ . Then $I(C \cap f_3, P) \leq 10$ which is a contradiction. Thus $i_3 = 10$.

Since
$$I(C \cap F_2^2, P) = 16$$
, we have $i_4 \ge 16$.

Remark 3.2. Let f_4 be a quartic such that $i_4 = I(C \cap f_4, P)$. By Namba's lemma, we have $I(f_4 \cap F_2, P) = 8 = (\deg f_4)(\deg F_2)$. Here we can not apply Corollary 1.5, i.e., we can not say that F_2 is a component of f_4 .

Lemma 3.3. The order sequence at P is $\{0 \longrightarrow 12\} \cup \{16\} \cup \{r\}$ for some $r \in \{13, 14, 15\} \cup \{17 \longrightarrow 28\}$. Moreover, such r is attained by an irreducible polynomial of degree 4.

Proof. Since the degree of canonical divisor is 2g-2=28, any order of canonical divisor at P is in the set $\{0\longrightarrow 28\}$. Thus one more order r is an element in the set $\{13,14,15\}\cup\{17\longrightarrow 28\}$. Let the divisor rP be cut out by a curve f. If $\deg f\leq 3$, then $I(f\cap C,P)=r\geq 10$. Namba's lemma implies that $I(f\cap F_2,P)\geq 8$, which is bigger than $(\deg f)(\deg F_2)\leq 6$. By Bezout's theorem, and that f is a multiple of F_2 , say $f=F_2h$ with $\deg h\leq 1$. Then $I(h\cap C,P)=r-8\geq 5$, which is a contradiction. Thus the degree of f is 4 since any canonical divisor is cut out by a curve of degree 4. We can also prove that f is irreducible. Indeed, if f is reducible, then f is factored into polynomials of lower degree than 4. If f is factored into four lines, then $0\leq I(C\cap f,P)\leq 8$. If f is factored into one line and a cubic, then $I(C\cap f,P)\leq 12$. If f is factored into two lines and a conic, then $I(C\cap f,P)\leq 12$. If f is factored into two conics, then $I(C\cap f,P)=16$ for the case $f=F_2f_2$, and $I(C\cap f,P)\leq 12$ for the case $f=F_2f_2$, where f_2 is a conic different from F_2 . Note that $I(C\cap f_2,P)\leq 4$ because $I(F_2\cap f_2,P)\leq 4=(\deg F_2)(\deg f_2)$ by Bezout's theorem.

Lemma 3.4. There is no smooth plane curve of degree 7 with a point at which the order sequence is $\{0 \longrightarrow 12\} \cup \{16\} \cup \{r\}$ with $27 \le r \le 28$.

Proof. Suppose that such a curve exists. Then the Weierstrass gap sequence $G(P) = \{1 \longrightarrow 13\} \cup \{17\} \cup \{r+1\}$ and $H(P) = \{0\} \cup \{14,15,16\} \cup \{18 \longrightarrow \} - \{r+1\}$. Since 14 and 15 are elements in H(P) and H(P) is a semigroup, 28 and 29 are elements of H(P). Thus $r+1 \neq 28,29$, which contradicts the assumption.

Lemma 3.5. There exists a smooth plane curve of degree 7 with a point at which the order sequence is $\{0 \longrightarrow 12\} \cup \{16\} \cup \{r\}$ with $24 \le r \le 26$.

Proof. Let
$$P = (0,0)$$
 and
$$f_2 = y - x^2$$

$$f_4 = \lambda_1 f_2 + \lambda_2 x^2 f_2 + \lambda_3 y^4$$

$$f_7 = \mu_1 f_4 + \mu_2 f_4 (x^3 + y^3) + \mu_3 (f_2)^3 x^{r - 24 - 2\lfloor \frac{r - 24}{2} \rfloor} y^{\lfloor \frac{r - 24}{2} \rfloor},$$

and let C_7 be the curve with the equation f_7 .

Then, for general nonzero λ_i 's and μ_i 's we can check the following:

- (1) C_7 is a smooth curve of degree 7, since the base locus of the system is only one point $\{(0,0,1)\}$ at which a generic member is smooth. By Bertini's theorem, C_7 is smooth.
- (2) $I(f_2 \cap C_7, P) = 8$, since $I(f_2 \cap C_7, P) = I(f_2 \cap f_4, P) = I(f_2 \cap y^4, P)$.
- (3) $I(T_PC_7 \cap C_7, P) = 2$, since $I(T_PC \cap C_7, P) = I(y \cap C_7, P)$.
- (4) $I(f_4 \cap C_7, P) = r$, since

$$I(f_4 \cap C_7, P) = I(f_4 \cap (f_2)^3 x^{r-24-2\lfloor \frac{r-24}{2} \rfloor} y^{\lfloor \frac{r-24}{2} \rfloor})$$

$$= 3I(f_4 \cap f_2, P) + (r-24-2\lfloor \frac{r-24}{2} \rfloor) I(f_4 \cap x, P) + (\lfloor \frac{r-24}{2} \rfloor) I(f_4 \cap y, P)$$

$$= 12I(y \cap f_2, P) + (r-24-2\lfloor \frac{r-24}{2} \rfloor) + 2(\lfloor \frac{r-24}{2} \rfloor)$$

Thus the C_7 is a desired curve.

Lemma 3.6. There exists a smooth plane curve of degree 7 with a point at which the order sequence is $\{0 \longrightarrow 12\} \cup \{16\} \cup \{r\}$ with $17 \le r \le 22$.

Proof. Let P = (0,0) and

$$f_{2} = y - x^{2}$$

$$f_{4} = \lambda_{1} f_{2} + \lambda_{2} x^{2} f_{2} + \lambda_{3} y^{4}$$

$$f_{7} = \mu_{1} f_{4} + \mu_{2} f_{4} (x^{3} + y^{3}) + \mu_{3} (f_{2})^{2} x^{r - 16 - 2 \lfloor \frac{r - 16}{2} \rfloor} y^{\lfloor \frac{r - 16}{2} \rfloor}.$$

and let C_7 be the curve with the equation f_7 .

Then, for general nonzero λ_i 's and μ_i 's we can check the following:

- (1) C_7 is a smooth curve of degree 7.
- (2) $I(f_2 \cap C_7, P) = 8$.
- (3) $I(T_PC_7 \cap C_7, P) = 2$.
- (4) $I(f_4 \cap C_7, P) = r$.

Thus the C_7 is a desired curve.

Lemma 3.7. There exists a smooth plane curve of degree 7 with a point at which the order sequence is $\{0 \longrightarrow 12\} \cup \{16\} \cup \{r\}$ with $13 \le r \le 15$.

Proof. Let
$$P = (0,0)$$
 and

$$f_{2} = y - x^{2}$$

$$f_{4} = \lambda_{1} f_{2} + \lambda_{2} x^{2} f_{2} + \lambda_{3} y^{4}$$

$$f_{7} = \mu_{1} f_{4} + \mu_{2} f_{4} (x^{3} + y^{3}) + \mu_{3} (f_{2}) x^{r-8-2\lfloor \frac{r-8}{2} \rfloor} y^{\lfloor \frac{r-8}{2} \rfloor},$$

and let C_7 be the curve with the equation f_7 .

Then, for general nonzero λ_i 's and μ_i 's we can check the following:

- (1) C_7 is a smooth curve of degree 7.
- (2) $I(f_2 \cap C_7, P) = 8$.
- (3) $I(T_PC_7 \cap C_7, P) = 2$.
- (4) $I(f_4 \cap C_7, P) = r$.

Thus the C_7 is a desired curve.

Theorem 3.8. Let P be a 2-flex of order of contact 8 on a smooth plane curve of degree 7. Then the order sequence at P is one of $\{0 \longrightarrow 12\} \cup \{16\} \cup \{r\}$ for $r \in \{13 \longrightarrow 15\} \cup \{17 \longrightarrow 26\}$.

Also there exists a smooth plane curve of degree 7 with a 2-flex point P at which the order sequence is $\{0 \longrightarrow 12\} \cup \{16\} \cup \{r\} \text{ for } r \in \{13 \longrightarrow 15\} \cup \{17 \longrightarrow 22\} \cup \{24 \longrightarrow 26\}.$

Remark 3.9. In the set $\{13, 14, 15\} \cup \{17 \longrightarrow 28\}$ of all candidates for r, we proved or disproved the existence of a smooth curve of degree 7 corresponding to each integer except for the number 23.

3.2. On a curve of degree 8 In this case the orders determined by lines and the power of osculating conic are

$$\{0 \longrightarrow 10\} \cup \{10 \longrightarrow 16\} \cup \{20 \longrightarrow 22\} = \{0 \longrightarrow 16\} \cup \{20 \longrightarrow 22\}$$

and its cardinality is g-1=20. Hence we need to find one more order.

Using Bezout's theorem and Namba's Lemma, we have $i_1=2,\ i_2=10,\ i_3=12,$ $i_4=20,\ {\rm and}\ i_5\geq 22.$

Since the degree of canonical divisor is 2g-2=40, any order of canonical divisor at P is in the set $\{0 \longrightarrow 40\}$. Thus one more order r is an element in the set $\{17,18,19\} \cup \{23 \longrightarrow 40\}$. Let the divisor rP be cut out by a curve f. If $\deg f \leq 4$, then $I(f \cap C, P) = r \geq 17$. Namba's lemma implies that $I(f \cap F_2, P) \geq 10$, which is bigger than $(\deg f)(\deg F_2) \leq 8$. By Bezout's theorem, and that f is a multiple of F_2 , say $f = F_2h$ with $\deg h \leq 2$. Then $I(h \cap C, P) = r - 10 \geq 7$ and hence $h = F_2$ and r = 20 by Bezout's theorem, which is a contradiction to the choice of r. Thus the degree of f is 5 since any canonical divisor is cut out by a curve of degree 5. We can also prove that f is irreducible in a similar way.

Lemma 3.10. There exists a smooth plane curve of degree 8 with a point at which the order sequence is $\{0 \longrightarrow 16\} \cup \{20 \longrightarrow 22\} \cup \{40\}$, i.e., r = 40.

Proof. Let P = (0,0) and

$$f_2 = y - x^2$$

$$f_5 = \lambda_1 (y - x^2) + \lambda_2 x^3 (y - x^2) + \lambda_3 y^5$$

$$f_8 = \mu_1 f_5 + \mu_2 f_5 (x^3 + y^3) + \mu_3 (f_2)^4,$$

and let C_8 be the curve defined by the equation f_8 .

Then, for general nonzero λ_i 's and μ_i 's we can check the following:

- (1) C_8 is a smooth curve of degree 8.
- (2) $I(f_2 \cap C_8, P) = 10$.
- (3) $I(T_PC_8 \cap C_8, P) = 2$.
- (4) $I(f_5 \cap C_8, P) = 40.$

Thus the C_8 is a desired curve.

Lemma 3.11. There is no smooth plane curve of degree 8 with a point at which the order sequence is $\{0 \longrightarrow 16\} \cup \{20 \longrightarrow 22\} \cup \{r\}$ for $35 \le r \le 39$.

Proof. Suppose that such a curve exists. Then the Weierstrass gap sequence $G(P) = \{1 \longrightarrow 17\} \cup \{21 \longrightarrow 23\} \cup \{r+1\}$ and $H(P) = \{0\} \cup \{18, 19, 20\} \cup \{24 \longrightarrow\} - \{r+1\}$. Since 18, 19 and 20 are elements in H(P) and H(P) is a semigroup, every integers from 36 to 40 are elements of H(P). However, since the number r+1 belongs to this set, it is a contradiction.

Lemma 3.12. There exists a smooth plane curve of degree 8 with a point at which the order sequence is $\{0 \longrightarrow 16\} \cup \{20 \longrightarrow 22\} \cup \{r\}$ for $30 \le r \le 34$.

Proof. Let P = (0,0) and

$$f_{2} = y - x^{2}$$

$$f_{5} = \lambda_{1}(y - x^{2}) + \lambda_{2}x^{3}(y - x^{2}) + \lambda_{3}y^{5}$$

$$f_{8} = \mu_{1}f_{5} + \mu_{2}f_{5}(x^{3} + y^{3}) + \mu_{3}(f_{2})^{3}x^{r - 30 - 2\lfloor \frac{r - 30}{2} \rfloor}y^{\lfloor \frac{r - 30}{2} \rfloor},$$

and let C_8 be the curve with the equation f_8 .

Then, for general nonzero λ_i 's and μ_i 's we can check the following:

- (1) C_8 is a smooth curve of degree 8.
- (2) $I(f_2 \cap C_8, P) = 10.$

- (3) $I(T_PC_8 \cap C_8, P) = 2$.
- (4) $I(f_5 \cap C_8, P) = r$.

Thus the C_8 is a desired curve.

Lemma 3.13. There exists a smooth plane curve of degree 8 with a point at which the order sequence is $\{0 \longrightarrow 16\} \cup \{20 \longrightarrow 22\} \cup \{r\}$ for $23 \le r \le 28$.

Proof. Let P = (0,0) and

$$f_{2} = y - x^{2}$$

$$f_{5} = \lambda_{1}(y - x^{2}) + \lambda_{2}x^{3}(y - x^{2}) + \lambda_{3}y^{5}$$

$$f_{8} = \mu_{1}f_{5} + \mu_{2}f_{5}(x^{3} + y^{3}) + \mu_{3}(f_{2})^{2}x^{r - 20 - 2\lfloor \frac{r - 20}{2} \rfloor}y^{\lfloor \frac{r - 20}{2} \rfloor},$$

and let C_8 be the curve with the equation f_8 .

Then, for general nonzero λ_i 's and μ_i 's we can check the following:

- (1) C_8 is a smooth curve of degree 8.
- (2) $I(f_2 \cap C_8, P) = 10.$
- (3) $I(T_PC_8 \cap C_8, P) = 2$.
- (4) $I(f_5 \cap C_8, P) = r$.

Thus the C_8 is a desired curve.

Lemma 3.14. There exists a smooth plane curve of degree 8 with a point at which the order sequence is $\{0 \longrightarrow 16\} \cup \{20 \longrightarrow 22\} \cup \{r\}$ for $17 \le r \le 19$.

Proof. Let P = (0,0) and

$$f_{2} = y - x^{2}$$

$$f_{5} = \lambda_{1}(y - x^{2}) + \lambda_{2}x^{3}(y - x^{2}) + \lambda_{3}y^{5}$$

$$f_{8} = \mu_{1}f_{5} + \mu_{2}f_{5}(x^{3} + y^{3}) + \mu_{3}f_{2}(x^{r-10-2\lfloor \frac{r-10}{2} \rfloor}y^{\lfloor \frac{r-10}{2} \rfloor}),$$

and let C_8 be the curve with the equation f_8 .

Then, for general nonzero λ_i 's and μ_i 's we can check the following:

- (1) C_8 is a smooth curve of degree 8.
- (2) $I(f_2 \cap C_8, P) = 10.$
- (3) $I(T_PC_8 \cap C_8, P) = 2$.
- (4) $I(f_5 \cap C_8, P) = r$.

Thus the C_8 is a desired curve.

Theorem 3.15. Let P be a 2-flex of order of contact 10 on a smooth plane curve of degree 8. Then the order sequence at P is one of $\{0 \longrightarrow 16\} \cup \{20 \longrightarrow 22\} \cup \{r\}$ for $r \in \{17 \longrightarrow 19\} \cup \{23 \longrightarrow 34\} \cup \{40\}$.

Also there exists a smooth plane curve of degree 8 with a 2-flex point P at which the order sequence is $\{0 \longrightarrow 16\} \cup \{20 \longrightarrow 22\} \cup \{r\}$ for $r \in \{17 \longrightarrow 19\} \cup \{23 \longrightarrow 28\} \cup \{30 \longrightarrow 34\} \cup \{40\}$.

Remark 3.16. In the set $\{17, 18, 19\} \cup \{23 \longrightarrow 40\}$ of all candidates for r, we proved or disproved the existence of a smooth curve of degree 8 corresponding to each integer except for the number 29.

3.3. On a curve of degree 9 In this case the orders determined by lines and the power of osculating conic are

$$\{0 \longrightarrow 12\} \cup \{12 \longrightarrow 20\} \cup \{24 \longrightarrow 28\} \cup \{36\}$$

$$= \{0 \longrightarrow 20\} \cup \{24 \longrightarrow 28\} \cup \{36\}$$

and its cardinality is g-1=27. Hence we need to find one more order.

Using Bezout's theorem and Namba's Lemma, we have $i_1=2,\ i_2=12,\ i_3=14,$ $i_4=24,\ i_5=26,$ and $i_6\geq 36.$

One more order r is an element in the set

$$\{21,22,23\} \cup \{29 \longrightarrow 35\} \cup \{37 \longrightarrow 54\}.$$

Let the divisor rP be cut out by a curve f. If $\deg f \leq 5$, then $I(f \cap C, P) = r \geq 21$. Namba's lemma implies that $I(f \cap F_2, P) \geq 12$, and that f is a multiple of F_2 by Bezout's theorem. Let $f = hF_2$, $\deg h \leq 3$. Then we have $I(h \cap C, P) = r - 12 \geq 9$. By Namba's theorem again, we conclude that h is multiple of F_2 . Thus $f = F_2^2$ or $f = F_2^2 \ell$ where ℓ is a line. Hence $I(f \cap C, P) = 24$, 25 or 26. Then this is a contradiction. Thus the degree of f is 6. We can also prove that f is irreducible in a similar way.

Lemma 3.17. There is no smooth plane curve of degree 9 with a point at which the order sequence is $\{0 \longrightarrow 20\} \cup \{24 \longrightarrow 28\} \cup \{36\} \cup \{r\} \text{ for } r \in \{43 \longrightarrow 47\} \cup \{51 \longrightarrow 54\}.$

Proof. Suppose that such a curve exists. Then the Weierstrass gap sequence $G(P) = \{1 \longrightarrow 21\} \cup \{25 \longrightarrow 29\} \cup \{37\} \cup \{r+1\} \text{ and } H(P) = \{0\} \cup \{22, 23, 24\} \cup \{30 \longrightarrow 36\} \cup \{38 \longrightarrow \} - \{r+1\}.$ Since $\{22, 23, 24, 30 \longrightarrow 36\}$ is a subset of H(P) and H(P)

is a semigroup, $\{44 \longrightarrow 48, 52 \longrightarrow 55\}$ is a subset of H(P). However, since the gap r+1 belongs to this set, it is a contradiction.

Lemma 3.18. There exists a smooth plane curve of degree 9 with a point at which the order sequence is $\{0 \longrightarrow 20\} \cup \{24 \longrightarrow 28\} \cup \{36\} \cup \{r\}$ for $r \in \{21 \longrightarrow 23\} \cup \{29 \longrightarrow 34\} \cup \{37 \longrightarrow 42\} \cup \{48 \longrightarrow 50\}$.

Proof. Let P = (0,0) and

$$f_{2} = y - x^{2}$$

$$f_{6} = \lambda_{1}(y - x^{2}) + \lambda_{2}x^{4}(y - x^{2}) + \lambda_{3}y^{6}$$

$$f_{9} = \mu_{1}f_{6} + \mu_{2}f_{6}(x^{3} + y^{3}) + \mu_{3}(f_{2})^{4}$$

$$f_{9,r} = \begin{cases} \nu_{1}f_{9} + \nu_{2}(f_{2})^{4}x^{r - 48 - 2\lfloor \frac{r - 48}{2} \rfloor}y^{\lfloor \frac{r - 48}{2} \rfloor}, & \text{if } 48 \leq r \leq 50 \\ \nu_{1}f_{9} + \nu_{2}(f_{2})^{3}x^{r - 36 - 2\lfloor \frac{r - 36}{2} \rfloor}y^{\lfloor \frac{r - 36}{2} \rfloor}, & \text{if } 37 \leq r \leq 42 \\ \nu_{1}f_{9} + \nu_{2}(f_{2})^{2}x^{r - 24 - 2\lfloor \frac{r - 24}{2} \rfloor}y^{\lfloor \frac{r - 12}{2} \rfloor}, & \text{if } 29 \leq r \leq 34 \\ \nu_{1}f_{9} + \nu_{2}(f_{2})x^{r - 12 - 2\lfloor \frac{r - 12}{2} \rfloor}y^{\lfloor \frac{r - 12}{2} \rfloor}, & \text{if } 21 \leq r \leq 23 \end{cases}$$

and let $C_{9,r}$ be the curve with the equation $f_{9,r}$.

Then, for general nonzero λ_i 's, μ_i 's and ν_i 's we can check the following:

- (1) $C_{9,r}$ is a smooth curve of degree 9.
- (2) $I(f_2 \cap C_{9,r}, P) = 12.$
- (3) $I(T_P C_{9,r} \cap C_{9,r}, P) = 2.$
- (4) $I(f_5 \cap C_{9,r}, P) = r$.

Thus the $C_{9,r}$ is a desired curve.

Theorem 3.19. Let P be a 2-flex of order of contact 12 on a smooth plane curve of degree 10. Then the order sequence at P is one of $\{0 \longrightarrow 20\} \cup \{24 \longrightarrow 28\} \cup \{36\} \cup \{r\} \text{ for } r \in \{21 \longrightarrow 23\} \cup \{29 \longrightarrow 35\} \cup \{37 \longrightarrow 42\} \cup \{48 \longrightarrow 50\}.$

Also there exists a smooth plane curve of degree 10 with a 2-flex point P at which the order sequence is $\{0 \longrightarrow 20\} \cup \{24 \longrightarrow 28\} \cup \{36\} \cup \{r\}$ for $r \in \{21 \longrightarrow 23\} \cup \{29 \longrightarrow 34\} \cup \{37 \longrightarrow 42\} \cup \{48 \longrightarrow 50\}$.

Remark 3.20. In the set $\{21, 22, 23\} \cup \{29 \longrightarrow 35\} \cup \{37 \longrightarrow 54\}$ of all candidates for r, we proved or disproved the existence of a smooth curve of degree 9 corresponding to each integer except for the number 35.

ACKNOWLEDGMENT

The first author was partially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2016R1D1A1B01011730).

REFERENCES

- 1. E. Arbarello, M. Cornalba, P.A. Griffiths & J. Harris: Geometry of Algebraic Curves. I, Springer-Verlag, Berlin/New York, 1985.
- 2. B. Brieskorn & H. Knörrer: Plane Algebraic Curves. Modern Birkhäuser Classics, Springer Basel, 2012.
- 3. S.J. Kim & J. Komeda: The Weierstrass semigroups on the quotient curve of a plane curve of degree ≤ 7 by an involution. Journal of Algebra **322** (2009), 137-152.
- 4. M. Namba: Families of meromorphic functions on compact Riemann surfaces. Lecture Notes in Math. **767**, Springer-Verlag, Berlin, 1979.
- 5. J.G. Semple & L. Roth: Introduction to Algebraic Geometry. Oxford University Press, 1985.

 $^{\rm a}{\rm Department}$ of Mathematics and RINS, Gyeongsang National University, Jinju 52828, Republic of Korea

Email address: skim@gnu.ac.kr

^bDepartment of Information and Communication Engineering, Honam University, Gwangju 62399, Republic of Korea

 $Email\ address: {\tt ejkang@honam.ac.kr}$