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A WEIERSTRASS SEMIGROUP AT A GENERALIZED FLEX

ON A PLANE CURVE

Seon Jeong Kim a and Eunju Kang b, ∗

Abstract. We consider a Weierstrass semigroup at a generalized flex on a smooth
plane curve. We find the candidates of a Weierstrass semigroup at a 2-flex of higher
multiplicity on a smooth plane curve of degree d ≥ 5, and give some examples to
show the existence of them.

1. Introduction and Preliminaries

Let C be a smooth complex projective plane curve of degree d ≥ 4. Let P be

a point on C. We divide the lines on the plane into three types according to the

intersection multiplicity at P :

(1) I(C ∩ ℓ0, P ) = 0;

(2) I(C ∩ ℓ1, P ) = 1;

(3) I(C ∩ ℓ2, P ) ≥ 2;

where I(C ∩ ℓ, P ) means the intersection multiplicity of C and ℓ at P . We call ℓ2

the tangent line to C at P and denote it by TPC. If I(C∩TPC,P ) > 2, then we call

P the inflection point or a flex on C. One can generalize the notion of this concept

by replacing the lines by curves of some given degree m. At each point P , for each

natural number m < d, there exists a curve Fm of degree m which have the highest

order of contact with C. We call such a curve Fm as an osculating curve of degree

m at P to C. Note that an osculating curve Fm need not be irreducible. We are

interested in the case that Fm is irreducible. The point P on C is called an m-flex

if Fm is irreducible and I(C ∩ Fm, P ) > m(m+3)
2 where Fm is an osculating curve of
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degree m. Note that the number m(m+3)
2 is the dimension of the system of curves of

degree m. Obviously, a 1-flex means a flex in our notation.

In this paper, we consider a Weierstrass semigroup at 2-flexes, which is also known

as sextactic points.

The following are well known;

Lemma 1.1. On a smooth plane curve of degree d ≥ 4, the canonical series is cut

out by the system of all curves of degree d− 3.

Lemma 1.2 ([5], Bertini’s theorem). The generic element of a linear system is

smooth away from the base locus of the system.

Lemma 1.3 ([2], Bezout’s theorem). Let Cm and Cn be plane curves of degree m

and n, respectively. If they have no common component, then we have∑
P∈Cm∩Cn

I(Cm ∩ Cn) = mn.

Lemma 1.4 ([4], Namba’s lemma). Let C1, C2 and C be three plane curves, and

let P be a smooth point on C. If I(C ∩ C1, P ) ≥ m and I(C ∩ C2, P ) ≥ m, then

I(C1 ∩ C2, P ) ≥ m.

Corollary 1.5. Let C be a plane curve and P a smooth point on C. Let C1 and

C2 be plane curves defined by the polynomial h1 and h2, respectively. If min{I(C ∩
C1, P ), I(C ∩C2, P )} > (deg h1)(deg h2) and h2 is irreducible, then h1 is a multiple

of h2.

Proof. By Namba’s lemma, I(C1 ∩ C2, P ) ≥ min{I(C ∩ C1, P ), I(C ∩ C2, P )} >

(deg h1)(deg h2). By Bezout’s theorem, C1 and C2 have a common component.

Since C2 is irreducible, C2 is the common component of them. �

For a point P on a smooth curve C of genus g, P is a Weierstrass point if the gap

sequence GP = {n ∈ N0 | there exists a canonical divisor K with I(C ∩ K,P ) =

n − 1} is different from {1, 2 −→ g}([1]). We call the sequence {I(C ∩ K,P ) |
K is a canonical divisor of C} as an order sequence of canonical divisors at P . Thus

P is a Weierstrass point if the order sequence of canonical divisors at P is not

{0, 1 −→ g − 1}. Recall that there are only finite number of Weierstrass points on

C, which means that the order sequence of canonical divisors at a point is exactly

{0, 1 −→ g − 1} except for a finite number of points, i.e., Weierstrass points. For a
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smooth plane curve C of degree d, by Lemma 1.1, the order sequence of canonical

divisors at P is the set {I(C ∩ fd−3, P ) | fd−3 is a polynomial of degree d− 3}.

2. A 2-flex which is a Weierstrass Point

Let C be a smooth plane curve of degree d ≥ 4. For each natural number

1 ≤ k ≤ d− 1, the number ik := ik(P ) means the number I(C ∩ Fk, P ) where Fk is

the osculating curve of degree k at P to C.

Lemma 2.1. Let C be a smooth plane curve of degree d ≥ 4 and P a 2-flex on C.

Then i1 = 2 and i2 > 5.

Proof. Since P is a 2-flex, the osculating conic F2 at P to C is irreducible and

i2 = I(C ∩F2, P ) > 5. Let ℓ2 be the tangent line to C at P . Then I(C ∩ ℓ2, P ) ≥ 2.

If I(C ∩ ℓ2, P ) ≥ 3, then I(F2 ∩ ℓ2, P ) ≥ 3 > (degF2)(deg ℓ2), F2 contains ℓ2

as a component, which is a contradiction since F2 is an irreducible conic. Thus

i1 = I(C ∩ ℓ2, P ) = 2. �

We are interested in a 2-flex point P which is a Weierstrass point.

If d = 4, then the genus of C is 3 and the lines cut out the canonical series whose

order sequence at P is {0, 1, 2}. Thus P is not a Weierstrass point. Thus we consider

only d ≥ 5.

Remark 2.2. If d ≥ 5 and m = 2 then F2 is unique. If F2 and G2 are two

different osculating conics to C at P then min{I(C ∩ F2, P ), I(C ∩ G2, P )} > 5 so

I(F2 ∩G2, P ) > 5 by Nambs’s lemma. But I(F2 ∩G2, P ) ≤ 4 by Bertini’s theorem,

which is a contradiction.

Theorem 2.3. Let C be a smooth plane curve of degree d ≥ 5 and P a 2-flex on

C. If i2(P ) = I(C ∩ F2, P ) ≥ 2⌊d2⌋ + 2 for an irreducible conic F2, then P is a

Weierstrass point of C.

Proof. It suffices to show that there exists a polynomial fd−3 such that I(C ∩
fd−3, P ) ≥ g = (d−1)(d−2)

2 .

When d is odd, we let d = 2k + 1, k ≥ 2. Since d − 3 = 2(k − 1), the degree of

F k−1
2 is a polynomial of degree d− 3. We have

I(C ∩ F k−1
2 , P ) ≥ (k − 1)(2⌊d

2
⌋+ 2) =

d− 3

2
(d+ 1) ≥ g.
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When d is even, we let d = 2k, k ≥ 3. Since d − 3 = 2(k − 2) + 1, the degree of

F k−2
2 ℓ2 is a polynomial of degree d− 3, where ℓ2 is the tangent line to C at P . We

have

I(C ∩ F k−2
2 ℓ2, P ) ≥ (k − 2)(2⌊d

2
⌋+ 2) + 2 = (

d

2
− 2)(d+ 2) + 2 ≥ g,

since d ≥ 6 for even d.

Thus P is a Weierstrass point in both cases. �

In next theorem, we give the order sequence at P when i2(P ) is a high value, i.e.,

i2(P ) ≥ 2(d− 3) + 1.

Theorem 2.4. Let C be a smooth plane curve of degree d ≥ 5 and P a 2-flex point

on C. If i2(P ) ≥ 2(d− 3) + 1, then the order sequences at P is∪
0≤α≤ d−3

2

{αi2 −→ αi2 + 2(d− 2α− 3)}.

Moreover, such a curve C and a point P ∈ C exist, indeed the following curve and

the point P satisfy the conditions.

Cd : λ1(y− x2) + λ2(y− x2)(xd−2 + yd−2) + λ3y
d + λ4x

i2−2⌊ i2
2
⌋y⌊

i2
2
⌋ and P = (0, 0).

Proof. Note that the canonical series is cut out by the curves of degree d− 3. First,

we obtain the orders at P using polynomials of the form Fα
2 ℓ

β0
0 ℓβ1

1 ℓβ2
2 with 2α +

β0 + β1 + β2 = d − 3. Here ℓ2 is the tangent line at P to C, ℓ0 is any line not

passing through P , and ℓ1 is any line, distinct from ℓ2, passing through P . We have

I(Fα
2 ℓ

β0
0 ℓβ1

1 ℓβ2
2 ∩ C,P ) = αi2 + β1 + 2β2. For fixed α, 0 ≤ α ≤ d−3

2 , we obtain

{I(Fα
2 ℓ

β0
0 ℓβ1

1 ℓβ2
2 ∩C,P ) | β0+β1+β2 = d− 3− 2α} = {αi2 −→ αi2+2(d− 3− 2α)}.

Since i2(P ) ≥ 2(d− 3) + 1, we can check that∪
0≤α≤ d−3

2

{αi2 −→ αi2 + 2(d− 3− 2α)}

is the disjoint union. Hence the cardinality of it is∑
0≤α≤ d−3

2

(2(d− 3− 2α) + 1) =
(d− 1)(d− 2)

2
= g

where g is the genus of C. Thus it is exactly the order sequence of the point P .

Since the order sequence is completely determined by the values i1 = 2 and

i2 ≥ 2(d−3)+1, it suffices to find a smooth curve of degree d admitting such values.

In fact, by the Bertini’s theorem, Cd is smooth for general nonzero λi’s. If we let
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F2 = y − x2, then F2 is the osculating conic and I(F2 ∩ Cd, P ) = i2. Thus Cd is a

desired curve. �

3. At a 2-flex of Order of Contact 2(d− 3)

In the Theorem 2.4, if i2(P ) ≤ 2(d − 3), then we check that
∪

0≤α≤ d−3
2
{αi2 −→

αi2+2(d− 2α− 3)} is not a disjoint union, by counting the elements of sets. So the

number of orders at P appeared in the union is less than the genus g of C. Then

we must find more orders at P not appeared in the union.

In this section, we consider the case i2(P ) = 2(d−3). In this case, the cardinality

of the union is exactly g−1 because the last element 2(d−3) of the first set and the

first element i2 in the second set are coincide. Thus we must find one more order at

P .

For d = 5, 2(d− 3) = 4 can not be i2 since i2 > 5.

For d = 6, we have i2 = 2(d − 3) = 6. From [3], we obtain the order sequences

{0 −→ 8} ∪ {r} with r ∈ {10 −→ 16} ∪ {18}. Here r = i3. Moreover, they proved

that i3 can not be 17.

So we deal with the cases for d = 7, 8 and 9 in this section.

3.1. On a curve of degree 7 Let d = 7 and i2 = 2(d − 3) = 8. In this case the

orders determined by lines and the power of osculating conic are

{0 −→ 8} ∪ {8 −→ 12} ∪ {16} = {0 −→ 12} ∪ {16}

and its cardinality is g − 1 = 14. Hence we need to find one more order.

Lemma 3.1. We have i1 = 2, i3 = 10, and i4 ≥ 16.

Proof. By Lemma 2.1, i1 = 2.

Let ℓ2 be the tangent line to C at P . Since I(C ∩F2ℓ2, P ) = 10, we have i3 ≥ 10.

Suppose that i3 > 10 and let f3 be a cubic such that I(C ∩ f3, P ) = i3 > 10.

By Corollary 1.5, f3 = F2ℓ for some line ℓ. Then I(C ∩ f3, P ) ≤ 10 which is a

contradiction. Thus i3 = 10.

Since I(C ∩ F 2
2 , P ) = 16, we have i4 ≥ 16. �

Remark 3.2. Let f4 be a quartic such that i4 = I(C ∩ f4, P ). By Namba’s lemma,

we have I(f4 ∩ F2, P ) = 8 = (deg f4)(degF2). Here we can not apply Corollary 1.5,

i.e., we can not say that F2 is a component of f4.
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Lemma 3.3. The order sequence at P is {0 −→ 12} ∪ {16} ∪ {r} for some r ∈
{13, 14, 15}∪{17 −→ 28}. Moreover, such r is attained by an irreducible polynomial

of degree 4.

Proof. Since the degree of canonical divisor is 2g − 2 = 28, any order of canonical

divisor at P is in the set {0 −→ 28}. Thus one more order r is an element in the set

{13, 14, 15} ∪ {17 −→ 28}. Let the divisor rP be cut out by a curve f . If deg f ≤ 3,

then I(f ∩ C,P ) = r ≥ 10. Namba’s lemma implies that I(f ∩ F2, P ) ≥ 8, which

is bigger than (deg f)(degF2) ≤ 6. By Bezout’s theorem, and that f is a multiple

of F2, say f = F2h with deg h ≤ 1. Then I(h ∩ C,P ) = r − 8 ≥ 5, which is a

contradiction. Thus the degree of f is 4 since any canonical divisor is cut out by a

curve of degree 4. We can also prove that f is irreducible. Indeed, if f is reducible,

then f is factored into polynomials of lower degree than 4. If f is factored into four

lines, then 0 ≤ I(C ∩ f, P ) ≤ 8. If f is factored into one line and a cubic, then

I(C ∩ f, P ) ≤ 12. If f is factored into two lines and a conic, then I(C ∩ f, P ) ≤ 12.

If f is factored into two conics, then I(C ∩ f, P ) = 16 for the case f = F 2
2 , and

I(C ∩ f, P ) ≤ 12 for the case f = F2f2, where f2 is a conic different from F2. Note

that I(C ∩ f2, P ) ≤ 4 because I(F2 ∩ f2, P ) ≤ 4 = (degF2)(deg f2) by Bezout’s

theorem. �

Lemma 3.4. There is no smooth plane curve of degree 7 with a point at which the

order sequence is {0 −→ 12} ∪ {16} ∪ {r} with 27 ≤ r ≤ 28.

Proof. Suppose that such a curve exists. Then the Weierstrass gap sequence G(P ) =

{1 −→ 13}∪{17}∪{r+1} and H(P ) = {0}∪{14, 15, 16}∪{18 −→}−{r+1}. Since
14 and 15 are elements in H(P ) and H(P ) is a semigroup, 28 and 29 are elements

of H(P ). Thus r + 1 ̸= 28, 29, which contradicts the assumption. �

Lemma 3.5. There exists a smooth plane curve of degree 7 with a point at which

the order sequence is {0 −→ 12} ∪ {16} ∪ {r} with 24 ≤ r ≤ 26.

Proof. Let P = (0, 0) and

f2 = y − x2

f4 = λ1f2 + λ2x
2f2 + λ3y

4

f7 = µ1f4 + µ2f4(x
3 + y3) + µ3(f2)

3xr−24−2⌊ r−24
2

⌋y⌊
r−24

2
⌋,

and let C7 be the curve with the equation f7.

Then, for general nonzero λi’s and µi’s we can check the following:
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(1) C7 is a smooth curve of degree 7, since the base locus of the system is only

one point {(0, 0, 1)} at which a generic member is smooth. By Bertini’s

theorem, C7 is smooth.

(2) I(f2 ∩ C7, P ) = 8, since I(f2 ∩ C7, P ) = I(f2 ∩ f4, P ) = I(f2 ∩ y4, P ).

(3) I(TPC7 ∩ C7, P ) = 2, since I(TPC ∩ C7, P ) = I(y ∩ C7, P ).

(4) I(f4 ∩ C7, P ) = r, since

I(f4 ∩ C7, P ) = I(f4 ∩ (f2)
3xr−24−2⌊ r−24

2
⌋y⌊

r−24
2

⌋)

= 3I(f4 ∩ f2, P ) + (r − 24− 2⌊r − 24

2
⌋)I(f4 ∩ x, P ) + (⌊r − 24

2
⌋)I(f4 ∩ y, P )

= 12I(y ∩ f2, P ) + (r − 24− 2⌊r − 24

2
⌋) + 2(⌊r − 24

2
⌋)

Thus the C7 is a desired curve. �

Lemma 3.6. There exists a smooth plane curve of degree 7 with a point at which

the order sequence is {0 −→ 12} ∪ {16} ∪ {r} with 17 ≤ r ≤ 22.

Proof. Let P = (0, 0) and

f2 = y − x2

f4 = λ1f2 + λ2x
2f2 + λ3y

4

f7 = µ1f4 + µ2f4(x
3 + y3) + µ3(f2)

2xr−16−2⌊ r−16
2

⌋y⌊
r−16

2
⌋,

and let C7 be the curve with the equation f7.

Then, for general nonzero λi’s and µi’s we can check the following:

(1) C7 is a smooth curve of degree 7.

(2) I(f2 ∩ C7, P ) = 8.

(3) I(TPC7 ∩ C7, P ) = 2.

(4) I(f4 ∩ C7, P ) = r.

Thus the C7 is a desired curve. �

Lemma 3.7. There exists a smooth plane curve of degree 7 with a point at which

the order sequence is {0 −→ 12} ∪ {16} ∪ {r} with 13 ≤ r ≤ 15.

Proof. Let P = (0, 0) and

f2 = y − x2

f4 = λ1f2 + λ2x
2f2 + λ3y

4

f7 = µ1f4 + µ2f4(x
3 + y3) + µ3(f2)x

r−8−2⌊ r−8
2

⌋y⌊
r−8
2

⌋,
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and let C7 be the curve with the equation f7.

Then, for general nonzero λi’s and µi’s we can check the following:

(1) C7 is a smooth curve of degree 7.

(2) I(f2 ∩ C7, P ) = 8.

(3) I(TPC7 ∩ C7, P ) = 2.

(4) I(f4 ∩ C7, P ) = r.

Thus the C7 is a desired curve. �

Theorem 3.8. Let P be a 2-flex of order of contact 8 on a smooth plane curve

of degree 7. Then the order sequence at P is one of {0 −→ 12} ∪ {16} ∪ {r} for

r ∈ {13 −→ 15} ∪ {17 −→ 26}.
Also there exists a smooth plane curve of degree 7 with a 2-flex point P at which

the order sequence is {0 −→ 12} ∪ {16} ∪ {r} for r ∈ {13 −→ 15} ∪ {17 −→
22} ∪ {24 −→ 26}.

Remark 3.9. In the set {13, 14, 15}∪{17 −→ 28} of all candidates for r, we proved

or disproved the existence of a smooth curve of degree 7 corresponding to each

integer except for the number 23.

3.2. On a curve of degree 8 In this case the orders determined by lines and the

power of osculating conic are

{0 −→ 10} ∪ {10 −→ 16} ∪ {20 −→ 22} = {0 −→ 16} ∪ {20 −→ 22}

and its cardinality is g − 1 = 20. Hence we need to find one more order.

Using Bezout’s theorem and Namba’s Lemma, we have i1 = 2, i2 = 10, i3 = 12,

i4 = 20, and i5 ≥ 22.

Since the degree of canonical divisor is 2g−2 = 40, any order of canonical divisor

at P is in the set {0 −→ 40}. Thus one more order r is an element in the set

{17, 18, 19} ∪ {23 −→ 40}. Let the divisor rP be cut out by a curve f . If deg f ≤ 4,

then I(f ∩C,P ) = r ≥ 17. Namba’s lemma implies that I(f ∩F2, P ) ≥ 10, which is

bigger than (deg f)(degF2) ≤ 8. By Bezout’s theorem, and that f is a multiple of

F2, say f = F2h with deg h ≤ 2. Then I(h ∩ C,P ) = r − 10 ≥ 7 and hence h = F2

and r = 20 by Bezout’s theorem, which is a contradiction to the choice of r. Thus

the degree of f is 5 since any canonical divisor is cut out by a curve of degree 5. We

can also prove that f is irreducible in a similar way.
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Lemma 3.10. There exists a smooth plane curve of degree 8 with a point at which

the order sequence is {0 −→ 16} ∪ {20 −→ 22} ∪ {40}, i.e., r = 40.

Proof. Let P = (0, 0) and

f2 = y − x2

f5 = λ1(y − x2) + λ2x
3(y − x2) + λ3y

5

f8 = µ1f5 + µ2f5(x
3 + y3) + µ3(f2)

4,

and let C8 be the curve defined by the equation f8.

Then, for general nonzero λi’s and µi’s we can check the following:

(1) C8 is a smooth curve of degree 8.

(2) I(f2 ∩ C8, P ) = 10.

(3) I(TPC8 ∩ C8, P ) = 2.

(4) I(f5 ∩ C8, P ) = 40.

Thus the C8 is a desired curve. �

Lemma 3.11. There is no smooth plane curve of degree 8 with a point at which the

order sequence is {0 −→ 16} ∪ {20 −→ 22} ∪ {r} for 35 ≤ r ≤ 39.

Proof. Suppose that such a curve exists. Then the Weierstrass gap sequence G(P ) =

{1 −→ 17}∪{21 −→ 23}∪{r+1} and H(P ) = {0}∪{18, 19, 20}∪{24 −→}−{r+1}.
Since 18, 19 and 20 are elements in H(P ) and H(P ) is a semigroup, every integers

from 36 to 40 are elements of H(P ). However, since the number r + 1 belongs to

this set, it is a contradiction. �

Lemma 3.12. There exists a smooth plane curve of degree 8 with a point at which

the order sequence is {0 −→ 16} ∪ {20 −→ 22} ∪ {r} for 30 ≤ r ≤ 34.

Proof. Let P = (0, 0) and

f2 = y − x2

f5 = λ1(y − x2) + λ2x
3(y − x2) + λ3y

5

f8 = µ1f5 + µ2f5(x
3 + y3) + µ3(f2)

3xr−30−2⌊ r−30
2

⌋y⌊
r−30

2
⌋,

and let C8 be the curve with the equation f8.

Then, for general nonzero λi’s and µi’s we can check the following:

(1) C8 is a smooth curve of degree 8.

(2) I(f2 ∩ C8, P ) = 10.
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(3) I(TPC8 ∩ C8, P ) = 2.

(4) I(f5 ∩ C8, P ) = r.

Thus the C8 is a desired curve. �

Lemma 3.13. There exists a smooth plane curve of degree 8 with a point at which

the order sequence is {0 −→ 16} ∪ {20 −→ 22} ∪ {r} for 23 ≤ r ≤ 28.

Proof. Let P = (0, 0) and

f2 = y − x2

f5 = λ1(y − x2) + λ2x
3(y − x2) + λ3y

5

f8 = µ1f5 + µ2f5(x
3 + y3) + µ3(f2)

2xr−20−2⌊ r−20
2

⌋y⌊
r−20

2
⌋,

and let C8 be the curve with the equation f8.

Then, for general nonzero λi’s and µi’s we can check the following:

(1) C8 is a smooth curve of degree 8.

(2) I(f2 ∩ C8, P ) = 10.

(3) I(TPC8 ∩ C8, P ) = 2.

(4) I(f5 ∩ C8, P ) = r.

Thus the C8 is a desired curve. �

Lemma 3.14. There exists a smooth plane curve of degree 8 with a point at which

the order sequence is {0 −→ 16} ∪ {20 −→ 22} ∪ {r} for 17 ≤ r ≤ 19.

Proof. Let P = (0, 0) and

f2 = y − x2

f5 = λ1(y − x2) + λ2x
3(y − x2) + λ3y

5

f8 = µ1f5 + µ2f5(x
3 + y3) + µ3f2(x

r−10−2⌊ r−10
2

⌋y⌊
r−10

2
⌋),

and let C8 be the curve with the equation f8.

Then, for general nonzero λi’s and µi’s we can check the following:

(1) C8 is a smooth curve of degree 8.

(2) I(f2 ∩ C8, P ) = 10.

(3) I(TPC8 ∩ C8, P ) = 2.

(4) I(f5 ∩ C8, P ) = r.

Thus the C8 is a desired curve. �
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Theorem 3.15. Let P be a 2-flex of order of contact 10 on a smooth plane curve

of degree 8. Then the order sequence at P is one of {0 −→ 16} ∪ {20 −→ 22} ∪ {r}
for r ∈ {17 −→ 19} ∪ {23 −→ 34} ∪ {40}.

Also there exists a smooth plane curve of degree 8 with a 2-flex point P at which

the order sequence is {0 −→ 16} ∪ {20 −→ 22} ∪ {r} for r ∈ {17 −→ 19} ∪ {23 −→
28} ∪ {30 −→ 34} ∪ {40}.

Remark 3.16. In the set {17, 18, 19} ∪ {23 −→ 40} of all candidates for r, we

proved or disproved the existence of a smooth curve of degree 8 corresponding to

each integer except for the number 29.

3.3. On a curve of degree 9 In this case the orders determined by lines and the

power of osculating conic are

{0 −→ 12} ∪ {12 −→ 20} ∪ {24 −→ 28} ∪ {36}

= {0 −→ 20} ∪ {24 −→ 28} ∪ {36}

and its cardinality is g − 1 = 27. Hence we need to find one more order.

Using Bezout’s theorem and Namba’s Lemma, we have i1 = 2, i2 = 12, i3 = 14,

i4 = 24, i5 = 26, and i6 ≥ 36.

One more order r is an element in the set

{21, 22, 23} ∪ {29 −→ 35} ∪ {37 −→ 54}.

Let the divisor rP be cut out by a curve f . If deg f ≤ 5, then I(f ∩C,P ) = r ≥ 21.

Namba’s lemma implies that I(f ∩ F2, P ) ≥ 12, and that f is a multiple of F2 by

Bezout’s theorem. Let f = hF2, deg h ≤ 3. Then we have I(h∩C,P ) = r− 12 ≥ 9.

By Namba’s theorem again, we conclude that h is multiple of F2. Thus f = F 2
2

or f = F 2
2 ℓ where ℓ is a line. Hence I(f ∩ C,P ) = 24, 25 or 26. Then this is a

contradiction. Thus the degree of f is 6. We can also prove that f is irreducible in

a similar way.

Lemma 3.17. There is no smooth plane curve of degree 9 with a point at which the

order sequence is {0 −→ 20}∪{24 −→ 28}∪{36}∪{r} for r ∈ {43 −→ 47}∪{51 −→
54}.

Proof. Suppose that such a curve exists. Then the Weierstrass gap sequence G(P ) =

{1 −→ 21} ∪ {25 −→ 29} ∪ {37} ∪ {r + 1} and H(P ) = {0} ∪ {22, 23, 24} ∪ {30 −→
36}∪{38 −→}−{r+1}. Since {22, 23, 24, 30 −→ 36} is a subset of H(P ) and H(P )
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is a semigroup, {44 −→ 48, 52 −→ 55} is a subset of H(P ). However, since the gap

r + 1 belongs to this set, it is a contradiction. �

Lemma 3.18. There exists a smooth plane curve of degree 9 with a point at which

the order sequence is {0 −→ 20} ∪ {24 −→ 28} ∪ {36} ∪ {r} for r ∈ {21 −→
23} ∪ {29 −→ 34} ∪ {37 −→ 42} ∪ {48 −→ 50}.

Proof. Let P = (0, 0) and

f2 = y − x2

f6 = λ1(y − x2) + λ2x
4(y − x2) + λ3y

6

f9 = µ1f6 + µ2f6(x
3 + y3) + µ3(f2)

4

f9,r =


ν1f9 + ν2(f2)

4xr−48−2⌊ r−48
2

⌋y⌊
r−48

2
⌋, if 48 ≤ r ≤ 50

ν1f9 + ν2(f2)
3xr−36−2⌊ r−36

2
⌋y⌊

r−36
2

⌋, if 37 ≤ r ≤ 42

ν1f9 + ν2(f2)
2xr−24−2⌊ r−24

2
⌋y⌊

r−24
2

⌋, if 29 ≤ r ≤ 34

ν1f9 + ν2(f2)x
r−12−2⌊ r−12

2
⌋y⌊

r−12
2

⌋, if 21 ≤ r ≤ 23

and let C9,r be the curve with the equation f9,r.

Then, for general nonzero λi’s, µi’s and νi’s we can check the following:

(1) C9,r is a smooth curve of degree 9.

(2) I(f2 ∩ C9,r, P ) = 12.

(3) I(TPC9,r ∩ C9,r, P ) = 2.

(4) I(f5 ∩ C9,r, P ) = r.

Thus the C9,r is a desired curve. �

Theorem 3.19. Let P be a 2-flex of order of contact 12 on a smooth plane curve

of degree 10. Then the order sequence at P is one of {0 −→ 20} ∪ {24 −→ 28} ∪
{36} ∪ {r} for r ∈ {21 −→ 23} ∪ {29 −→ 35} ∪ {37 −→ 42} ∪ {48 −→ 50}.

Also there exists a smooth plane curve of degree 10 with a 2-flex point P at which

the order sequence is {0 −→ 20} ∪ {24 −→ 28} ∪ {36} ∪ {r} for r ∈ {21 −→
23} ∪ {29 −→ 34} ∪ {37 −→ 42} ∪ {48 −→ 50}.

Remark 3.20. In the set {21, 22, 23}∪{29 −→ 35}∪{37 −→ 54} of all candidates for
r, we proved or disproved the existence of a smooth curve of degree 9 corresponding

to each integer except for the number 35.
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