Acknowledgement
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.
References
- Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. http://dx.doi.org/10.12989/acc.2018.6.6.585.
- Barany, M., Barron, J.T., Gu, L. and Barany, K. (2001), "Exchange of the actin-bound nucleotide in intact arterial smooth muscle", J. Biol. Chem., 276, 48398-48403. https://doi.org/10.1074/jbc.M106227200.
- Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
- Bennett, V. and Baines, A.J. (2001), "Spectrin and ankyrin-based pathways: metazoan inventions forintegrating cells into tissues", Physiolog. Rev., 81(3), 1353-1392. https://doi.org/10.1152/physrev.2001.81.3.1353.
- Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.10.
- Cammarata, R. (1997), "Surface and interface stress effects on interfacial and nanostructured materials", Mater. Sci. Eng.: A, 237(2), 180-184. https://doi.org/10.1016/S0921-5093(97)00128-7.
- Chami, K., Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091.
- Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nat. Rev. Molec. Cell biol., 5(8), 601-613. https://doi.org/10.1038/nrm1438.
- Chen, C., Yin, L., Song, X., Yang, H., Ren, X., Gong, X., ... & Yang, L. (2016), "Effects of vimentin disruption on the mechanoresponses of articular chondrocyte", Biochem. Biophys. Res. Commun., 469(1), 132-137. https://doi.org/10.3390/cells7100147.
- Chen, T., Chiu, M.S. and Weng, C.N. (2006), "Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids", J. Appl. Phys., 100(7), 074308. https://doi.org/10.1063/1.2356094.
- Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., 7(2), 65. http://dx.doi.org/10.12989/acc.2019.7.2.065.
- Elzinga, M., Collins, J.H., Kuehl, W.M. and Adelstein, R.S. (1973), "Complete amino-acid sequence of actin of rabbit skeletal muscle", Proc. Nat. Acad. Sci., 70(9), 2687-2691. https://doi.org/10.1073/pnas.70.9.
- Fan, F., Lei, B., Sahmani, S. and Safaei, B. (2020), "On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates", Thin Wall. Struct., 154, 106841. https://doi.org/10.1016/j.tws.2020.106841.
- Fan, F., Safaei, B. and Sahmani, S. (2020), "Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis", Thin Wall. Struct., 107231. https://doi.org/10.1016/j.tws.2020.107231.
- Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. https://doi.org/10.1016/j.tws.2020.107231.
- Felgner, H., Frank, R. and Schliwa, M. (1996), "Flexural rigidity of microtubules measured with the use of optical tweezers", J. Cell Sci., 109(2), 509-516. https://doi.org/10.1529/biophysj.104.055483.
- Gardel, M.L., Shin, J.H., MacKintosh, F.C., Mahadevan, L., Matsudaira, P. and Weitz, D.A. (2004), "Elastic behavior of cross-linked and bundled actin networks", Sci., 304(5675), 1301-1305. https://doi.org/10.1126/science.1095087.
- Ghanati, P. and Safaei, B. (2019), "Elastic buckling analysis of polygonal thin sheets under compression", Ind. J. Phys., 93(1), 47-52. https://doi.org/10.1007/s12648-018-1254-9.
- Ghoshdastider, U., Jiang, S., Popp, D. and Robinson, R.C. (2015), "In search of the primordial actin filament", Proc. Nat. Acad. Sci., 112(30), 9150-9151. https://doi.org/10.1073/pnas.1511568112.
- Gibbs, J.W. (1906), The Scientific Papers of J. Willard Gibbs, Vol. 1, Longmans, Green and Company.
- Grishchuk, E.L., Molodtsov, M.I., Ataullakhanov, F.I. and McIntosh, J.R. (2005), "Force production by disassembling microtubules", Nature, 438(7066), 384-388. https://doi.org/10.1021/bi00480a014.
- Gu, B., Mai, Y.W. and Ru, C.Q (2009), "Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing", Acta Mechanica, 207(3-4), 195-209. https://doi.org/10.1007/s00707-008-0121-8.
- Gunning, P.W., Ghoshdastider, U., Whitaker, S., Popp, D. and Robinson, R.C. (2015), "The evolution of compositionally and functionally distinct actin filaments", J. Cell. Sci., 128(11), 2009-2019. https://doi.org/10.1242/jcs.165563.
- Gurtin, M.E., Weissmüller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philosoph. Mag. A, 78(5), 1093-1109. https://doi.org/10.1080/01418619808239977.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hadji, L. and Safa, A. (2020), "Bending analysis of softcore and hardcore functionally graded sandwich beams", Earthq. Struct., 18(4), 481-492. https://doi.org/10.12989/eas.2020.18.4.481.
- Halliburton, W. (1887), "On muscle-plasma", J. Physiol., 8(3-4), 133. https://doi.org/10.1113/jphysiol.1887.sp000252.
- Holmes, K.C., Pop, D., Gebhard, W. and Kabsch, W. (1990), "The most detailed model of the actin filament available at present", Nature, 347, 44-49. https://doi.org/10.1038/347044a0.
- Hutchinson, J. (2001), "Closure to "On shear coefficients for timoshenko beam theory" (2001, ASME J. Appl. Mech., 68, 959)", J. Appl. Mech., 68(6), 960-961. https://doi.org/10.1115/1.1406957.
- Ishida, T., Thitamadee, S. and Hashimoto, T. (2007), "Twisted growth and organization of cortical microtubules", J. Plant Res., 120(1), 61-70. https://doi.org/10.1007/s10265-006-0039-y.
- Janosi, L., Mori, H., Sekine, Y., Abragan, J., Janosi, R., Hirokawa, G. and Kaji, A. (2000), "Mutations influencing the frr gene coding for ribosome recycling factor (RRF)", J. Molecul. Biol., 295(4), 815-829. https://doi.org/10.1006/jmbi.1999.3401.
- Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 39. http://dx.doi.org/10.12989/acc.2015.3.1.039.
- Khatir, S., Khatir, T., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Bui, T.Q., ... & Abdel-Wahab, M. (2020), "An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA", Smart Struct. Syst., 25(5), 605-617. https://doi.org/10.12989/sss.2020.25.5.605.
- Landau, L. and Lifshitz, E.M. (1986), "Theoretical physics. Vol. 6. Hydrodynamics", Nauka, Moscow. https://doi.org/10.1134/S0021364009010044.
- Li, T. (2008), "A mechanics model of microtubule buckling in living cells", J. Biomech., 41(8), 1722-1729. https://doi.org/10.1016/j.jbiomech.2008.03.003.
- Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. http://dx.doi.org/10.12989/acc.2017.5.5.539.
- Mofrad, M.R. and Kamm, R.D. (2006), Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics, Cambridge University Press. https://doi.org/10.1017/CBO9780511607318.
- Moradi-Dastjerdi, R., Behdinan, K., Safaei, B. and Qin, Z. (2020), "Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers", Eng. Struct., 222, 111141. https://doi.org/10.1016/j.engstruct.2020.111141.
- Nebab, M., Atmane, H.A., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
- Nebab, M., Benguediab, S., Atmane, H. A. and Bernard, F. (2020), "A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomech. Eng., 22(5), 415-431. http://dx.doi.org/10.12989/gae.2020.22.5.415.
- Oriol, C., Dubord, C. and Landon, F. (1977), "Crystallization of native striated-muscle actin", FEBS Lett., 73(1), 89-91. https://doi.org/10.1016/0014-5793(77)80022-7.
- Otterbein, L.R., Graceffa, P. and Dominguez, R. (2001), "The crystal structure of uncomplexed actin in the ADP state", Sci., 293(5530), 708-711. https://doi.org/10.1126/science.1059700.
- Park, H.S., Klein, P.A. and Wagner, G.J. (2006), "A surface Cauchy-Born model for nanoscale materials", Int. J. Numer. Meth. Eng., 68(10), 1072-1095. https://doi.org/10.1002/nme.1754.
- Pollard, T.D. and Cooper, J.A. (2009), "Actin, a central player in cell shape and movement", Sci., 326(5957), 1208-1212. https://doi.org/10.1126/science.1175862.
- Qian, X.S., Zhang, J.Q. and Ru, C.Q. (2007), "Wave propagation in orthotropic microtubules", J. Appl. Phys., 101(8), 084702. https://doi.org/10.1063/1.2717573.
- Radi, Z.A. and Khan, N.K. (2006), "Comparative expression and distribution of c-fos, estrogen receptora (ERa), and p38a in the uterus of rats, monkeys, and humans", Toxicol. Pathol., 34(4), 327-335. https://doi.org/10.3390/ani10020334.
- Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
- Safaei, B., Naseradinmousavi, P. and Rahmani, A. (2016), "Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression", J. Molecul. Graph. Model., 65, 43-60. https://doi.org/10.1016/j.jmgm.2016.02.001.
- Sahmani, S. and Safaei, B. (2021), "Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect", Appl. Math. Model., 89, 1792-1813. https://doi.org/10.1016/j.apm.2020.08.039.
- Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043.
- Straub, F. and Feuer, G. (1950), "Adenosinetriphosphate the functional group of actin", Biochimica Biophysica Acta, 4, 455-470. https://doi.org/10.1021/ja01188a515.
- Taj, M. and Zhang, J. (2012), "Analysis of vibrational behaviors of microtubules embedded within elastic medium by Pasternak model", Biochem. Biophys. Res. Commun., 424(1), 89-93. https://doi.org/10.1016/j.bbrc.2012.06.072.
- Taj, M. and Zhang, J.Q. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Math. Mech., 32(3), 293-300. https://doi.org/10.1007/s10483-011-1415-x.
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
- Timoshenko, S.P. and Gere, J.M. (2009), Theory of Elastic Stability, Courier Corporation.
- Tsuda, Y., Yasutake, H., Ishijima, A. and Yanagida, T. (1996), "Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation", Proc. Nat. Acad. Sci., 93(23), 12937-12942. https://doi.org/10.1073/pnas.93.23.
- Vaziri, A., Lee, H. and Mofrad, M.K. (2006), "Deformation of the cell nucleus under indentation: mechanics and mechanisms", J. Mater. Res., 21(8), 2126-2135. https://doi.org/10.1557/JMR.2006.0262.
- Vindin, H. and Gunning, P. (2013), "Cytoskeletal tropomyosins: choreographers of actin filament functional diversity", J. Muscle Res. Cell Motil., 34(3-4), 261-274. http://dx.doi.org/10.1007/ 978-0-387-84847-1_10.
- Von der Ecken, J., Müller, M., Lehman, W., Manstein, D.J., Penczek, P.A. and Raunser, S. (2015), "Structure of the F-actin-tropomyosin complex", Nature, 519(7541), 114-117. https://doi.org/10.1038/nature14033.
- Wang, C.Y., Ru, C.Q. and Mioduchowski, A. (2006), "Orthotropic elastic shell model for buckling of microtubules", Phys. Rev. E, 74(5), 052901. https://doi.org/10.1103/PhysRevE.74.052901.
- Wang, G.F. and Feng, X.Q. (2007), "Effects of surface elasticity and residual surface tension on the natural frequency of microbeams", Appl. Phys. Lett., 90(23), 231904. https://doi.org/10.1063/1.2746950.
- Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94(14), 141913. https://doi.org/10.1063/1.3117505.
- Wang, Y. and Qian, J. (2019), "Buckling of filamentous actin bundles in filopodial protrusions", Acta Mechanica Sinica, 35(2), 365-375. https://doi.org/10.1007/s10409-019-00838-1.
- Woody, R., Roberts, G., Clark, D. and Bayley, P. (1982), "1H NMR evidence for flexibility in microtubule‐associated proteins and microtubule protein oligomers", FEBS Lett., 141(2), 181-184. https://doi.org/10.1111/j.1432-1033.1977.tb11726.
- Zenzen, R., Khatir, S., Belaidi, I., Le Thanh, C. and Wahab, M.A. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248(15), 112497. https://doi.org/10.1016/j.compstruct.2020.112497.