DOI QR코드

DOI QR Code

Cyberbullying Detection in Twitter Using Sentiment Analysis

  • Theng, Chong Poh (Information Security Forensics and Computer Networking (INSFORNET), Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka) ;
  • Othman, Nur Fadzilah (Information Security Forensics and Computer Networking (INSFORNET), Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka) ;
  • Abdullah, Raihana Syahirah (Information Security Forensics and Computer Networking (INSFORNET), Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka) ;
  • Anawar, Syarulnaziah (Information Security Forensics and Computer Networking (INSFORNET), Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka) ;
  • Ayop, Zakiah (Information Security Forensics and Computer Networking (INSFORNET), Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka) ;
  • Ramli, Sofia Najwa (Faculty of Science and Information Technology Universiti Tun Hussien Onn Malaysia)
  • 투고 : 2021.11.05
  • 발행 : 2021.11.30

초록

Cyberbullying has become a severe issue and brought a powerful impact on the cyber world. Due to the low cost and fast spreading of news, social media has become a tool that helps spread insult, offensive, and hate messages or opinions in a community. Detecting cyberbullying from social media is an intriguing research topic because it is vital for law enforcement agencies to witness how social media broadcast hate messages. Twitter is one of the famous social media and a platform for users to tell stories, give views, express feelings, and even spread news, whether true or false. Hence, it becomes an excellent resource for sentiment analysis. This paper aims to detect cyberbully threats based on Naïve Bayes, support vector machine (SVM), and k-nearest neighbour (k-NN) classifier model. Sentiment analysis will be applied based on people's opinions on social media and distribute polarity to them as positive, neutral, or negative. The accuracy for each classifier will be evaluated.

키워드

과제정보

This publication has been supported by Center of Research and Innovation Management (CRIM), Universiti Teknikal Malaysia Melaka (UTeM). The authors would like to thank UTeM and INSFORNET research group members for their supports.

참고문헌

  1. V. Balakrishnan and T. Fernandez, "Self-esteem, empathy and their impacts on cyberbullying among young adults," Telemat. Informatics, vol. 35, no. 7, pp. 2028-2037, 2018, doi: 10.1016/j.tele.2018.07.006.
  2. F. K. Ventirozos, I. Varlamis, and G. Tsatsaronis, "Detecting aggressive behavior in discussion threads using text mining," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 10762 LNCS, pp. 420-431, doi: 10.1007/978-3-319-77116-8_31S.
  3. Encrypt, "What is Privacy Protection? [Updated for 2020]," Search Encrypt Blog, Dec. 20, 2019.
  4. S. M. Mohammad, Sentiment Analysis: Detecting Valence, Emotions, and Other Affectual States from Text. Elsevier Ltd, 2016.
  5. M. Yao, C. Chelmis and D. S. Zois, (2019) 'Cyberbullying ends here: Towards robust detection of cyberbullying in social media', in The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019. New York, New York, USA: Association for Computing Machinery, Inc, pp. 3427-3433. doi: 10.1145/3308558.3313462.
  6. V. Balakrishnan , S. Khan and H. R. Arabnia (2020) 'Improving cyberbullying detection using Twitter users' psychological features and machine learning', Computers and Security. Elsevier Ltd, 90, p. 101710. doi: 10.1016/j.cose.2019.101710.
  7. C. Chelmis, D. S. Zois, and M. Yao (2017) 'Mining Patterns of Cyberbullying on Twitter', IEEE International Conference on Data Mining Workshops, ICDMW, 2017-Novem, pp. 126-133. doi: 10.1109/ICDMW.2017.22.
  8. P. Tyagi, et al. (2019) 'Literature Review of Sentiment Analysis Techniques for Microblogging Site', SSRN Electronic Journal. doi: 10.2139/ssrn.3403968.
  9. P. Yang and Y. Chen (2018) 'A survey on sentiment analysis by using machine learning methods', in Proceedings of the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference, ITNEC 2017, pp. 117-121. doi: 10.1109/ITNEC.2017.8284920.
  10. M. V. Mantyla , D. Graziotin and M. Kuutila (2018) 'The evolution of sentiment analysis-A review of research topics, venues, and top cited papers', Computer Science Review, pp. 16-32. doi: 10.1016/j.cosrev.2017.10.002.
  11. H. Parveen and S. Pandey (2017) 'Sentiment analysis on Twitter Data-set using Naive Bayes algorithm', Proceedings of the 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology, iCATccT 2016. IEEE, pp. 416-419. doi: 10.1109/ICATCCT.2016.7912034.
  12. D, Chatzakou et al. (2017) 'Mean Birds: Detecting Aggression and Bullying on Twitter'. doi: 10.1145/3091478.3091487.
  13. M. Vadivukarassi, N. Puviarasan, and P. Aruna, "Sentimental Analysis of Tweets Using Naive Bayes Algorithm," World Appl. Sci. J., vol. 35, no. 1, pp. 54-59, 2017, doi: 10.5829/idosi.wasj.2017.54.59.
  14. A. D. M. Africa, A. R. V. Tabalan, and M. A. A. Tan, "Speech emotion recognition using support vector machines," Int. J. Emerg. Trends Eng. Res., vol. 8, no. 4, pp. 1212-1216, 2020, doi: 10.30534/ijeter/2020/43842020.
  15. W. L. Al-Yaseen, Z. A. Othman, and M. Z. A. Nazri, "Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system," Expert Syst. Appl., vol. 67, pp. 296-303, 2017, doi: 10.1016/j.eswa.2016.09.041
  16. Z. Zhang, "Introduction to machine learning: K-nearest neighbors," Ann. Transl. Med., vol. 4, no. 11, pp. 1-7, 2016, doi: 10.21037/atm.2016.03.37.
  17. Z. Zainol, et al. (2018)' Association Analysis of Cyberbullying on Social Media using Apriori Algorithm', International Journal of Engineering and Technology, 7(December), pp. 72-75. doi: 10.14419/ijet.v7i4.29.218