DOI QR코드

DOI QR Code

An Optimal Design Method of a Linear Generator for Conversion of Wave Energy

파력에너지 변환을 위한 선형발전기의 최적 설계 방법

  • 김정윤 (한국전기연구원 고전압평가본부) ;
  • 김병수 (경기대학교 대학원 전자공학과)
  • Received : 2021.10.12
  • Accepted : 2021.12.17
  • Published : 2021.12.31

Abstract

In this paper, we present an optimal design method for wave power generators using the response surface analysis. Especially, in our method, we reduce the mechanical loss by selecting the linear generator whose linear movement can be converted to the electrical energy directly with the vertical movement of waves. Therefore, we calculate the exciting force acting on the drive device in a slow-wave condition and determine the winding process with a ratio of the slots and poles for the improvement of energy conversion efficiency. In addition, we employ the regression analysis for deriving the shape factors of the stator and the translator, which have a significant effect on the performance of a generator. We choose the best design variables through the response surface analysis, and then we study the optimization method for designing the efficient experiment using the analysis results. Finally, we show the validity of the proposed method through the simulation results.

본 논문에서는 반응 표면 분석을 이용하여 파력 발전기의 최적 설계 방법을 제안한다. 특히 제안한 방법에서는 파도의 수직 운동을 직접 전기 에너지로 변환하기 위한 선형 운동 가능한 선형발전기를 선택함으로써 기계적 손실을 줄인다. 따라서 에너지 변환 효율 향상을 위해 느린 파 상태에서도 구동 장치에 작용하는 여자력을 계산하고 슬롯과 극의 비율로 권선 과정을 결정한다. 또한 발전기의 성능에 중요한 영향을 미치는 고정자와 변환기의 형상 인자를 도출하기 위해 회귀분석을 사용한다. 반응 표면 분석을 통해 최적의 설계 변수를 선정하고, 분석 결과를 활용하여 효율적인 실험 설계를 위한 최적화 방법을 제시한다. 마지막으로, 모의 실험 결과를 통해 제안한 방법의 타당성을 검증한다.

Keywords

References

  1. H. Polinder, M. E. C. Damen, and F. Gadner, "Linear PM generator system for wave energy conversion in the AWS," IEEE Trans. Energy Conversion, vol. 19, no. 3, 2004, pp. 583-589. https://doi.org/10.1109/TEC.2004.827717
  2. O. Danielsson, M. Eriksson, and M. Leijon, "Study of a lingitudinal flux permanent magnet lienar generator for wave energy converters," Int. J. of Energy Research, no. 30, 2006, pp. 1130-1145.
  3. N. M. Kimoulakis, A. G. Kladas, and J. A. Tegopoulos, "Power generator optimization from sea waves by using a permanent magnet linear generator drive," IEEE Trans. Magnetics, vol. 44, no. 6, 2008, pp. 1530-1533. https://doi.org/10.1109/TMAG.2007.914854
  4. S. E. Skaar, O. Krovel, and R. Nilssen, "Distribution, coil-span and winding factors for PM machines with concentrated windings," Proc. of Int. Conf. on Electrical Machines 2006, Chania,,Greece 2006, pp. 2-5.
  5. L. Huang, H. Yu, M. Hu, J. Zhao, and Z. Cheng, "A novel flux-switching permanent-magnet linear generator for wave energy extraction application," IEEE Trans. Magnetics, vol. 47, no. 5, 2011, pp. 1034-1037. https://doi.org/10.1109/TMAG.2010.2093509
  6. J. Falnes, Ocean waves and oscillating systems. U.K. Cambridge University Press, 2002.
  7. J. Kim, "Optimal Design of Linear Permanent Magnet Synchronous Generator for Wave Energy Converter using Response Surface Analysis," Master's thesis, Yonsei University, 2013.
  8. T. Ryu and J. Yoo, "Multi-Objective Geometric Optimal Design of a Linear Induction Motor Using Design of Experiments and the Sequential Response Surface Method," The Trans. of the Korean Society of Mechanical Engineers, vol. 33, no. 33, 2009, pp. 726-732. https://doi.org/10.3795/KSME-A.2009.33.8.726
  9. S. Park and J. Kim, Modern Design of Experiments. Seoul. Minyoungsa, 2011.
  10. T. Lee, Practical Regression analysis using Minitab. Paju. FREEACADEMY INC, 2011.
  11. J. R. Hendershot, T. J. E. Miller, Design of brushless permanent-magnet motors. U.K. Oxford Science Publications, 1994.
  12. K. Lee and J. Lee, "Effect of Pole to slot Ratio on Cogging Torque and EMF Waveform in Permanent Magnet Motor with Fractional-Slot," The Trans. of the Korea Institute of Electrical Engineers B, vol. 52B, no. 9, 2003, pp. 454-459.