DOI QR코드

DOI QR Code

A Study on Enzyme Activity and Antioxidant Activity of Fermented Rice Bran of Saccharomycopsis fibuligera Isolated from Nuruk

누룩에서 분리한 Saccharomycopsis fibuligera 미강발효물의 효소활성 및 항산화능에 대한 연구

  • Park, Yong-Won (Department of Biomedical Laboratory Sciences, Kyungdong University)
  • 박용원 (경동대학교 임상병리학과)
  • Received : 2021.09.28
  • Accepted : 2021.11.20
  • Published : 2021.11.28

Abstract

This paper aimed to increase the functionality and competitiveness of rice bran, which is used as an alternative food and cosmetic raw material, through fermentation. As a result of comparing the enzyme activity of 𝛼-amylase, CMCase, 𝛽-glucosidase, protease, etc. of fermented rice bran using standard strains with 6 strains with excellent enzyme activity among 50 strains of Saccharomycopsis fibuligera isolated from 5 types of Nuruk, A8 strain showed excellent enzyme activity of 13.7%, 21.1%, 50.3%, and 10.0% compared to the KCTC 7806 strain. As a result of the ABTS and DPPH tests as a result of fermentation, it was confirmed that rice bran fermented with A8 had 1.12 times and 1.28 times more antioxidant activity than rice bran fermented with KCTC 7806 strain. In this paper, it was possible to confirm the S. fibuligera A8 strain superior to the standard S. fibuligera strain KCTC 7806.

본 논문은 대체식품 및 화장품 원료로 사용되는 미강을 발효를 통해 기능성과 경쟁력을 증가시키는 것을 목표로 하였다. 5종류의 누룩에서 분리한 Saccharomycopsis fibuligera 50종의 균주 중 효소 활성이 우수한 6균주와 표준균주를 이용한 발효미강물의 𝛼-amylase, CMCase, 𝛽-glucosidase, protease 등의 효소 활성을 통해 비교한 결과, A8균이 KCTC 7806 균주에 비하여 13.7%, 21.1%, 50.3%, 10.0%의 우수한 효소 활성을 보였다. 발효의 결과지표로서 ABTS, DPPH 검사를 시행한 결과, A8으로 발효한 미강이 KCTC 7806 균주로 발효한 미강에 비하여 1.12배, 1.28배의 항산화능이 있음을 확인하였다. 본 논문으로, S. fibuligera 표준균주인 KCTC 7806 보다 우수한 S. fibuligera A8 균주를 확인할 수 있었다. 또한, 선행연구과제의 항염활성 및 항독성 결과와 더불어 우수한 효소 활성과 항산화능 결과를 통해 S. fibuligera A8 균주를 통한 미강 발효물이 대체식품 및 화장품 원료로서의 기능성과 가격 경쟁력을 증가시킬 수 있음을 확인하였다.

Keywords

References

  1. S. N. Chilton, J. P. Burton & G. Reid. (2015). Inclusion of fermented foods in food guides around the world. Nutrients, 7(1), 390-404. DOI : 10.3390/nu7010390
  2. M. L. Marco, D. Heeney, S. Binda, C. J. Cifelli, P. D. Cotter, B. Foligne, ... & R. Hutkins. (2017). Health benefits of fermented foods: microbiota and beyond. Current opinion in biotechnology, 44, 94-102. DOI : 10.1016/j.copbio.2016.11.010.
  3. E. Dimidi, S. R. Cox, M. Rossi & K. Whelan. (2019). Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients, 11(8), 1806. DOI : 10.3390/nu11081806
  4. S. Y. Baek, H. J. Yun, H. S. Choi, S. B. Hong, B. S. Koo & S. H. Yeo. (2010). Screening and characteristics of useful fungi for brewing from commercial nuruk in Chungcheong provinces. Microbiology and Biotechnology Letters, 38(4), 373-378.
  5. G. Das, S. Paramithiotis, B. S. Sivamaruthi, C. H. Wijaya, S. Suharta, N. Sanlier, ... & J. K. Patra. (2020). Traditional fermented foods with anti-aging effect: A concentric review. Food Research International, 134, 109269. DOI : 10.1016/j.foodres.2020.109269
  6. E. Pessione & S. Cirrincione. (2016). Bioactive molecules released in food by lactic acid bacteria: encrypted peptides and biogenic amines. Frontiers in microbiology, 7, 876. DOI : 10.3389/fmicb.2016.00876
  7. F. M. Abu-Salem, R. Mohamed, A. Gibriel & N. M. Rasmy. (2014). Levels of some antinutritional factors in tempeh produced from some legumes and jojobas seeds. Int. Sch. Sci. Res. Innov, 8, 296-301.
  8. M. S. Kim, S. I. Kim, B. S. Ha, H. Y. Park, S. Y. Baek, S. H. Yeo & H. S. Ro. (2014). Diversity, Saccharification Capacity, and Toxigenicity Analyses of Fungal Isolates in Nuruk. The Korean Journal of Mycology, 42(3), 191-200. DOI : 10.4489/KJM.2014.42.3.191
  9. Z. Chi, Z. Chi, G. Liu, F. Wang, L. Ju & T. Zhang. (2009). Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnology advances, 27(4), 423-431. DOI : 10.1016/j.biotechadv.2009.03.003
  10. J. Ha, Y. Wang, H. Jang, H. Seog & X. Chen. (2014). Determination of E, E-farnesol in Makgeolli (rice wine) using dynamic headspace sampling and stir bar sorptive extraction coupled with gas chromatography-mass spectrometry. Food chemistry, 142, 79-86. DOI : 10.1016/j.foodchem.2013.07.038
  11. Y. J. Yoon. (2013) Comparison of the antioxidant effects of rice wine (Makgeolli) and clear rice wine(Cheongju) and applied to the human HaCaT. Master's thesis. Seo Kyung University, Seoul.
  12. R. R. Singhania, A. K. Patel, R. K. Sukumaran, C. Larroche & A. Pandey. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource technology, 127, 500-507. DOI : 10.1016/j.biortech.2012.09.012
  13. C. J. Yeoman, Y. Han, D. Dodd, C. M. Schroeder, R. I. Mackie & I. K. Cann. (2010). Thermostable enzymes as biocatalysts in the biofuel industry. Advances in applied microbiology, 70, 1-55. DOI : 10.1016/S0065-2164(10)70001-0
  14. O. P. Sharma & T. K. Bhat. (2009). DPPH antioxidant assay revisited. Food chemistry, 113(4), 1202-1205. DOI : 10.1016/j.foodchem.2008.08.008
  15. J. H. Jang, H. K. Lee, J. T. Bae, J. S. Lee & B. Y. Hwang. (2020). Antioxidant and Anti-inflammatory Effects of Fermented Blackcurrant Fruit Extracts with Saccharomycopsis fibuligera. Journal of the Society of Cosmetic Scientists of Korea, 46(4), 403-413. DOI : 10.15230/SCSK.2020.46.4.403
  16. O. A. Adebo & I. Gabriela Medina-Meza. (2020). Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules, 25(4), 927. DOI : 10.3390/molecules25040927
  17. J. G. Je, H. S. Kim, H. G Lee, J. Y. Oh, L. Wang, S. Rho & Y. J. Jeon. (2019). Antioxidant and Antihypertension Effects of Enzyme Hydrolysate from Hippocampus abdominalis. Korean Journal of Fisheries and Aquatic Sciences, 52(2), 127-133. DOI : 10.5657/KFAS.2019.0127
  18. H. C. Chio, S. H. Jung & N. H. Jeong. (2020). Evaluation for Antioxidant Effects and Water-holding Capacity of Rice Protein Extracts from Cheongwon Area. Applied Chemistry for Engineering, 31(4), 398-403. DOI : 10.14478/ace.2020.1040