Acknowledgement
This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2018-0-01405) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation)" and this research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2021R1A6A1A03045425).
References
- S. K. Kaya, T. Paksoy & J. A. Garza-Reyes. (2020). The New Challenge of Industry 4.0. Logistics 4.0: Digital Transformation of Supply Chain Management, 51.
- P. Aleksic, M. Ghodsi, A. Michaely, C. Allauzen, K. Hall, B. Roark & P. Moreno. (2015). Bringing contextual information to google speech recognition.
- J. W. Ha, K. Nam, J. Kang, S. W. Lee, S. Yang, H. Jung & S. Kim. (2020). ClovaCall: Korean goal-oriented dialog speech corpus for automatic speech recognition of contact centers. arXiv preprint arXiv:2004.09367.
- D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel & K. Vesely. (2011). The Kaldi speech recognition toolkit. In IEEE 2011 workshop on automatic speech recognition and understanding (No. CONF). IEEE Signal Processing Society.
- M. N. Stuttle. (2003). A Gaussian mixture model spectral representation for speech recognition (Doctoral dissertation, University of Cambridge).
- M. Gales & S. Young. (2008). The application of hidden Markov models in speech recognition.
- A. Baevski, H. Zhou, A. Mohamed & M. Auli. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. arXiv preprint arXiv:2006.11477.
- C. Wang, J. Pino & J. Gu. (2020). Improving cross-lingual transfer learning for end-to-end speech recognition with speech translation. arXiv preprint arXiv:2006.05474.
- Z. Q. Zhang, Y. Song, M. H. Wu, X. Fang & L. R. Dai. (2021). XLST: Cross-lingual Self-training to Learn Multilingual Representation for Low Resource Speech Recognition. arXiv preprint arXiv:2103.08207.
- C. Park, Y. Yang, K. Park & H. Lim. (2020). Decoding strategies for improving low-resource machine translation. Electronics, 9(10), 1562. https://doi.org/10.3390/electronics9101562
- C. Park, S. Eo, H. Moon & H. S. Lim. (2021, June). Should we find another model?: Improving Neural Machine Translation Performance with ONE-Piece Tokenization Method without Model Modification. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers (pp. 97-104).
- K. Voll, S. Atkins & B. Forster. (2008). Improving the utility of speech recognition through error detection. Journal of digital imaging, 21(4), 371. https://doi.org/10.1007/s10278-007-9034-7
- A. Mani, S. Palaskar, N. V. Meripo, S. Konam & F. Metze. (2020, May). ASR error correction and domain adaptation using machine translation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6344-6348). IEEE.
- J. Liao, S. E. Eskimez, L. Lu, Y. Shi, M. Gong, L. Shou & M. Zeng. (2020). Improving readability for automatic speech recognition transcription. arXiv preprint arXiv:2004.04438.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez & I. Polosukhin. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
- C. Park, J. Seo, S. Lee, C. Lee, H. Moon, S. Eo & H. Lim. (2021). BTS: Back TranScription for Speech-to-Text Post-Processor using Text-to-Speech-to-Text. Proceedings of the 8th Workshop on Asian Translation, (pp. 106-116).
- M. Paulik, S. Rao, I. Lane, S. Vogel & T. Schultz, (2008, March). Sentence segmentation and punctuation recovery for spoken language translation. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 5105-5108). IEEE.
- S. Skodova, M. Kucharova & L. Seps, (2012, September). Discretion of speech units for the text post-processing phase of automatic transcription (in the czech language). In International Conference on Text, Speech and Dialogue (pp. 446-455). Springer, Berlin, Heidelberg.
- H. Cucu, A. Buzo, L. Besacier & C. Burileanu. (2013, July). Statistical error correction methods for domain-specific ASR systems. In International Conference on Statistical Language and Speech Processing (pp. 83-92). Springer, Berlin, Heidelberg.
- C. Park, K. Kim, Y. Yang, M. Kang & H. Lim. (2020). Neural spelling correction: translating incorrect sentences to correct sentences for multimedia. Multimedia Tools and Applications, 1-18.
- C. Park, Y. Yang, C. Lee & H. Lim. (2020). Comparison of the evaluation metrics for Neural Grammatical Error Correction with Overcorrection. IEEE Access, 8, 106264-106272. https://doi.org/10.1109/access.2020.2998149
- Z. Chi, S. Huang, L. Dong, S. Ma, S. Singhal, P. Bajaj & F. Wei. (2021). XLM-E: Cross-lingual Language Model Pre-training via ELECTRA. arXiv preprint arXiv:2106.16138.
- L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant & C. Raffel. (2020). mt5: A massively multilingual pre-trained text-to-text transformer. arXiv preprint arXiv:2010.11934.
- C. Lee & H. Kim. (2013). Automatic Korean word spacing using Pegasos algorithm. Information processing & management, 49(1), 370-379. https://doi.org/10.1016/j.ipm.2012.05.004
- J. Yi, J. Tao, Y. Bai, Z. Tian & C. Fan. (2020). Adversarial transfer learning for punctuation restoration. arXiv preprint arXiv:2004.00248.
- C. Park & H. Lim. (2020). A Study on the Performance Improvement of Machine Translation Using Public Korean-English Parallel Corpus. Journal of Digital Convergence, 18(6), 271-277. DOI : 10.14400/JDC.2020.18.6.271
- C. Park, Y. Lee, C. Lee & H. Lim. (2020). Quality, not quantity?: Effect of parallel corpus quantity and quality on neural machine translation. In The 32st Annual Conference on Human Cognitive Language Technology (pp. 363-368).
- H. Moon, C. Park, S. Eo, J. Park & H. Lim. (2021). Filter-mBART Based Neural Machine Translation Using Parallel Corpus Filtering. Journal of the Korea Convergence Society, 12(5), 1-7. DOI : /10.15207/JKCS.2021.12.5.001
- K. Papineni, S. Roukos, T. Ward & W. J. Zhu. (2002, July). Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318).
- K. Sakaguchi, C. Napoles, M. Post & J. Tetreault. (2016). Reassessing the goals of grammatical error correction: Fluency instead of grammaticality. Transactions of the Association for Computational Linguistics, 4, 169-182. https://doi.org/10.1162/tacl_a_00091
- T. Kudo & J. Richardson. (2018). Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226.