DOI QR코드

DOI QR Code

Discrimination of Korean Agaricus bisporus cultivars using CAPS markers

CAPS 마커를 이용한 국내 개발 양송이 품종 구분

  • Lee, Hwa-Yong (Department of Forest Science, Chungbuk National University) ;
  • An, Hyejin (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Oh, Youn-Lee (Mushroom Science Division, National Institute of Horticultural and Herbal Science) ;
  • Jang, Kab-Yeul (Mushroom Science Division, National Institute of Horticultural and Herbal Science) ;
  • Chung, Jong-Wook (Department of Industrial Plant Science and Technology, Chungbuk National University)
  • 이화용 (충북대학교 농업생명환경대학 산림학과) ;
  • 안혜진 (충북대학교 농업생명환경대학 특용식물학과) ;
  • 오연이 (국립원예특작과학원 버섯과) ;
  • 장갑열 (국립원예특작과학원 버섯과) ;
  • 정종욱 (충북대학교 농업생명환경대학 특용식물학과)
  • Received : 2021.10.26
  • Accepted : 2021.12.15
  • Published : 2021.12.31

Abstract

The cleaved amplified polymorphic sequence (CAPS) marker uses a restriction enzyme recognition site resulting from single nucleotide polymorphisms and insertions and deletions on the DNA sequence. This technique does not require expensive equipment, the process is simple, and clear results can be obtained reliably. In this study, Agaricus bisporus cultivars SaeA, SaeDo, SaeHan, SaeYeon, SaeJeong, Dodam, Seolgang, Dahyang, Hogam, and Hadam developed in Korea were discriminated using four CAPS markers. Our results indicated that it is possible to distinguish the ten cultivars and determine the genetic diversity among them.

본 연구에서는 국내에서 개발된 국내에서 개발된 10개의 양송이 품종을 CAPS 마커를 이용하여 구분하였다. An 등(2021)이 개발한 CAPS 마커 AB-gCAPs-017, AB-gCAPs-047, AB-gCAPs-055, AB-gCAPs-071을 이용하여 새아, 새도, 새한, 새연, 새정, 도담, 설강, 다향, 호감, 하담을 구분할 수 있었다. 본 연구의 결과는 국내 개발 양송이 품종에 대하여 품종간의 구별성과 유전적 다양성을 부여하여 품종보호에 대한 분자생물학적 근거를 마련하였다.

Keywords

Acknowledgement

본 연구는 농림축산식품부의 재원으로 농림수산식품기술기획평가원의 Golden Seed 프로젝트 사업 (213007-05-5-SBH20)으로 수행되었습니다.

References

  1. An H, Lee HY, Shim D, Choi SH, Cho H, Hyun TK, Jo IH, Chung JW. 2021. Development of CAPS markers for evaluation of genetic diversity and population structure in the germplasm of button mushroom (Agaricus bisporus). J Fungi 7: 375. https://doi.org/10.3390/jof7050375
  2. Caranta C, Thabuis A, Palloix A. 1999. Development of a CAPS marker for the Pvr4 locus: A tool for pyramiding potyvirus resistance genes in pepper. Genome 42: 1111-1116. https://doi.org/10.1139/gen-42-6-1111
  3. Choi SK. 2007. Quality characteristics of demi-glace sauce with pine mushroom and mushroom powder added. The Korean Journal of Culinary Research 13: 119-127.
  4. Elliott TJ. 1985. Genetics and breeding of species of Agaricus. In P. B. Flegg, D. M. Spencer & D. A. Wood. (ed.), Biology and Technology of the Cultivated Mushroom, Wiley. USA.
  5. Foulongne-Oriol M, Dufourcq R, Spataro, Devesse C, Broly A, Rodier A, Savoie JM. 2011. Comparative linkage mapping in the white button mushroom Agaricus bisporus provides foundation for breeding management. Curr Genet 57: 39-50. https://doi.org/10.1007/s00294-010-0325-z
  6. Ha JU, Koo SG, Lee HY, Hwang YM, Lee SC. 2001. Physical properties of fish paste containing Agaricus bisporus. Korean J Food Sci Technol 33: 451-454.
  7. Hong WJ, Khaing AA, Park YJ. 2013. Cultivar identification of Chrysanthemum (Dendranthema grandiflorum. Ramat.) using SSR markers. Korean J Intl Agri 25: 385-394. https://doi.org/10.12719/KSIA.2013.25.4.385
  8. Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudi SR, Pang G, Cho KY, Song CH. 2010. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 30: 49-56. https://doi.org/10.1016/j.nutres.2009.12.003
  9. Kabel MA, Jurak E, Makela MR, de Vries RP. 2017. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Appl Microbiol Biotechnol 101: 4363-4369. https://doi.org/10.1007/s00253-017-8294-5
  10. Kaundun SS, Matsumoto S. 2003. Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. Theor Appl Genet 106: 375-383. https://doi.org/10.1007/s00122-002-0999-9
  11. Kauserud H, Heegaard E, Buntgen U, Halvorsen R, Egli S, Senn-Irlet B, Krisai-Greilhuber I, Damon W, Sparks T, Norden J, Hoiland K, Kirk P, Semenov M, Boddy L, Stenseth NC. 2012. Warming-induced shift in European mushroom fruiting phenology. Proc Natl Acad Sci U S A 109: 14488-14493. https://doi.org/10.1073/pnas.1200789109
  12. Konieczny A, Ausubel FM. 1993. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4: 403-410. https://doi.org/10.1046/j.1365-313X.1993.04020403.x
  13. Kuklev MI, Fesenko IA, Karlov GI. 2009. Development of a CAPS marker for the Verticillium wilt resistance in tomatoes. Genetika 45: 656-661.
  14. Kunihisa M, Fukino N, Matsumoto S. 2003. Development of cleavage amplified polymorphic sequence (CAPS) markers for identification of strawberry cultivars. Euphytica 134: 209-215. https://doi.org/10.1023/B:EUPH.0000003884.19248.33
  15. Lee HY, An HJ, Oh YL, Jang KY, Kong WS, Ryu HJ, Chung JW. 2019. Assessment of genetic diversity and population structure of commercial button mushroom (Agaricus bisporus) strains in Korea. J Mushroom 17: 171-178. https://doi.org/10.14480/JM.2019.17.4.171
  16. Lopez PA, Widrlechner MP, Simon PW, Rai S, Boylston TD, Isbell TA, Bailey TB, Gardner CA, Wilson LA. 2008. Assessing phenotypic, biochemical, and molecular diversity in coriander (Coriandrum sativum L.) germplasm. Genet Resour Crop Evol 55: 247-275. https://doi.org/10.1007/s10722-007-9232-7
  17. Menolli Junior N, Asai T, Capelari M, Paccola-Meirelles LD. 2010. Morphological and molecular identification of four Brazilian commercial isolates of Pleurotus spp. and cultivation on corncob. Braz Arch Biol Technol 53: 397-408. https://doi.org/10.1590/S1516-89132010000200019
  18. Min KJ, Kim JK, Kwak AM, Kong WS, Oh YH, Kang HW. 2014. Genetic diversity of Agaricus bisporus strains by PCR polymorphism. Kor J Mycol 42: 1-8. https://doi.org/10.4489/KJM.2014.42.1.1
  19. Moon S, Hong CP, Ryu H, Lee HY. 2021. Development of cleaved amplified polymorphic sequence markers of Lentinula edodes cultivars Sanbaekhyang and Sulbaekhyang. Kor J Mycol 49: 33-44. https://doi.org/10.4489/KJM.20210004
  20. Moon S, Lee HY, Kim M, Ka KH, Ko HK, Chung JW, Koo CD, Ryu H. 2017. Development of cleaved amplified polymorphic sequence markers for the identification of Lentinula edodes cultivars Sanmaru 1ho and Chunjang 3ho. Kor J Mycol 45: 114-120. https://doi.org/10.4489/KJM.20170014
  21. Moon S, Lee HY, Ka KH, Koo CD, Ryu H. 2018. Development of a CAPS marker for the identification of the Lentinula edodes cultivar, 'Sanmaru 2ho'. J Mushroom 16: 51-56. https://doi.org/10.14480/JM.2018.16.1.51
  22. Moore AJ, Challen MP, Warner PJ, Elliott TJ. 2001. RAPD discrimination of Agaricus bisporus mushroom cultivars. Appl Microbiol Biotechnol 55: 742-749. https://doi.org/10.1007/s002530000588
  23. Moriya Y, Yamamoto K, Okada K, Iwanami H, Bessho H, Nakanishi T, Takasaki T. 2007. Development of a CAPS marker system for genotyping European pear cultivars harboring 17 S alleles. Plant Cell Rep 26: 345-354. https://doi.org/10.1007/s00299-006-0254-y
  24. Oh YL, Choi IG, Kong WS, Jang KY, Oh Mj, Im JH. 2020. Evaluating genetic diversity of Agaricus bisporus accessions through phylogenetic analysis using single-nucleotide polymorphism (SNP) markers. Mycobiology 49: 61-68.
  25. Oh YL, Jang KY, Jhune CS, Kong WS, Yoo YB, Shin PG, Seo JS. 2013. Quality changes in Agaricus bisporus varieties due to period and temperature during their storage. J Mushroom Sci Prod 11: 137-144. https://doi.org/10.14480/JM.2013.11.3.137
  26. Okada Y, Kanatani R, Arai S, Ito K. 2002. A CAPS marker that distinguishes the barley yellow mosaic disease resistance locus rym1 derived from Chinese landrace 'Mokusekko 3'. J Inst Brew 109: 103-105.
  27. Paisey EC, Abbas B. 2015. Morphological characteristics and nutritional values of wild types of sago mushrooms (Volvariella sp.) that growth naturally in Manokwari, West Papua. Natural Sci 7: 559-604.
  28. Park CW, Choi KJ, Soh EH, Koh HJ. 2016. Study on the future development direction of plant variety protection system in Korea. Korean J Breed Sci 48: 11-21. https://doi.org/10.9787/KJBS.2016.48.1.011
  29. Raper CA, Raper JR, Miller RE. 1972. Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 64: 1088-1117. https://doi.org/10.2307/3758075
  30. Royse DJ, Baars JJP, Tan Q. 2017. Current overview of mushroom production in the world. In D. C. Zied & A. Pardo-Gimenez. (ed.), Edible and Medicinal Mushrooms: Technology and Applications, Wiley-Blackwell. USA.
  31. Savoie JM, Foulongne-Oriol M, Barroso G, Callac P. 2013. Genetics and genomics of cultivated mushrooms, application to breeding of Agarics. In F. Kempken. (ed.), Agricultural Applications, Springer-Verlag. Germany.
  32. Sonnenberg ASM, Baars JJP, Kerrigan RW. 2008. Mushroom breeding: hurdles and challenges. In J. I. Lelly & J. A. Buswell. (ed.), Proceeding of the 6th International Conference of the World Society for Mushroom Biology and Mushroom Products, Bonn. Germany.
  33. Sonnenberg ASM, Baars JPB, Hendrickx PM, Lavrijssen B, Gao W, Weijn A, Mes JJ. 2011. Breeding and strain protection in the button mushroom Agaricus bisporus. In J. M. Savoie, M. Foulongne-Oriol, M. Largeteau & G. Barroso. (ed.), Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, Institut National de la Recherche Agronomique. France.
  34. Summerbell RC, Castle AJ, Horgen PA, Anderson JB. 1989. Inheritance of restriction fragment length polymorphisms in Agaricus brunnescens. Genetics 123: 293-300. https://doi.org/10.1093/genetics/123.2.293
  35. Yun MJ, Oh SI, Lee MS. 2009. Antioxidative and antimutagenic effects of Agaricus bisporus ethanol extracts. J Korean Soc Food Sci Nutr 38: 19-24. https://doi.org/10.3746/JKFN.2009.38.1.019