DOI QR코드

DOI QR Code

갈색 느티만가닥버섯 추출물의 부위별 항산화 활성

Antioxidant activities of brown beech mushroom (Hypsizygus marmoreus) pileus and stipe

  • 박민정 (경상국립대학교 제약공학과) ;
  • 유찬열 (경남산림환경연구원) ;
  • 조수정 (경상국립대학교 제약공학과)
  • Park, Min Jeong (Department of Pharmaceutical Engineering, Gyeongsang NationalUniversity) ;
  • Yu, Chan Yeol (ForestResearch Department, Gyeongsangnam-do Forest Environment Research Institute) ;
  • Cho, Soo Jeong (Department of Pharmaceutical Engineering, Gyeongsang NationalUniversity)
  • 투고 : 2021.11.29
  • 심사 : 2021.12.24
  • 발행 : 2021.12.31

초록

본 연구에서는 기능성 식의약품 소재로써 갈색 느티만가닥버섯(Hypsizygus marmoreus)의 이용 가능성을 조사하기 위해 갈색 느티만가닥버섯의 부위별, 추출 용매별 항산화 활성을 조사하였다. 열수 추출물 갓과 대의 총 폴리페놀 함량은 17.15±0.19 mg GAE/g과 7.37±0.16 mg GAE/g이었으며 에탄올 추출물 갓과 대의 총 폴리페놀 함량은 각각 10.23±0.14 mg GAE/g과 3.76.±0.19 mg GAE/g으로 에탄올 추출물에 비해 열수 추출물의 폴리페놀 함량이 높게 나타났고 대에 비해 갓의 폴리페놀 함량이 높게 나타났다. 또한 갈색 느티만가닥버섯 추출물의 DPPH, ABTS, ORAC 지수, 환원력도 10 mg/ml의 농도에서 에탄올 추출물에 비해 열수 추출물에서 높게 나타났고 대에 비해 갓에서 높게 나타났으며 흰색 느티만가닥버섯에 비해 갈색 느티만가닥버섯의 총 폴리페놀 함량, DPPH, ORAC 지수, 환원력이 높은 것으로 나타났다. 추출물의 세포독성은 WST-1 assay (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulphonate)를 이용하여 열수 추출물의 처리 농도에 따른 대식세포주 RAW 264.7의 세포 생존율로 확인하였으며 갈색 느티만가닥버섯 열수 추출물 처리구에서 대식세포주 RAW 264.7의 세포 생존율이 증가하였기 때문에 세포독성은 없는 것으로 판단된다. 이상의 결과를 종합하면, 느티만가닥버섯은 품종에 따라 항산화 활성에 차이가 있고, 갈색 느티만가닥버섯은 다른 버섯보다 항산화 활성이 높기 때문에 기능성 식의약품 소재로서 이용 가능성이 있다고 판단된다.

This study was carried out to evaluate potential of Hypsizygus marmoreus (brown cultivar) as a functional food and drug materials. H. marmoreus were divided into pileus and stipe and extracted in hot water and 80% ethanol. The total polyphenol content was highest in the hot water extracts (pileus 17.15±0.19 mg of GAE g, stipe 7.37±0.16 mg of GAE/g) and pileus compared to the ethanol extracts (pileus 10.23±0.14 mg of GAE/g, stipe 3.76.±0.19 mg of GAE/g) and stipe. Also, hot water extracts of pileus from H. marmoreus (brown cultivar) was more effective DPPH, ABTS, ORAC value, reducing power than ethanol extracts and stipe extracts. The pileus and stipe extracts were confirmed to be non-cytotoxic in the mouse macrophage cell line RAW 264.7 determined by WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulphonate) assay. Overall, extracts of H. marmoreus (brown cultivar) was higher antioxidant activity than other mushrooms, and no cytotoxicity. Therefore, H. marmoreus (brown cultivar) showed potential as a functional food and drug materials. The brown cultivar of H. marmoreus have higher antioxidant activity than white cultivar, H. marmoreus seem to have different antioxidant activity depending on the cultivar.

키워드

과제정보

본 연구는 2020-2021년도 경상국립대학교 대학회계 연구비 지원에 의해 수행된 결과의 일부이며 이에 감사드립니다.

참고문헌

  1. Barros L, Ferreira MJ, Queiros B, Ferreira ICFR, Baptista P. 2007. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103: 413-419. https://doi.org/10.1016/j.foodchem.2006.07.038
  2. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  3. Cao G, Alessio HM, Cutler RG. 1993. Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biol Med 14: 303-311. https://doi.org/10.1016/0891-5849(93)90027-R
  4. Chang ST, Buswell JA, Chiu SW. 1993. Mushroom biology and mushroom products. The Chinese University Press. Hong Kong. 3-17.
  5. Dubost NJ, Ou B, Beelman RB. 2007. Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem 105: 727-735. https://doi.org/10.1016/j.foodchem.2007.01.030
  6. Francoeur AM, Assalian A. 1996. Microcat: A novel cell proliferation and cytotoxicity assay based on WST-1. Biochemica 3: 19-25.
  7. Hirase S, Nakai S, Akatsu T, Kobayashi A, Oohara M. 1976. Structural studies on the anti-tumor active polysaccharides from Coriolus versicolor (Basidiomycetes). I. Fractionation with barium hydroxide. Yakugaku Zasshi 96: 413-418. https://doi.org/10.1248/yakushi1947.96.4_413
  8. Hong JK. 2009. A Study on Skin Aging Caused by Free-Radical and on Efficacy of Anti oxidant Vitamins. Kor J Aesthet Cosmetol 7: 51-62.
  9. Hong MH, Jin YJ, Pyo YH. 2012. Antioxidant properties and ubiquinone contents in different parts of several commercial mushrooms. J. Korean Soc. Food Sci Nutr 41: 1235-1241. https://doi.org/10.3746/JKFN.2012.41.9.1235
  10. Ikekawa T. 1995. Bunashimeji, Hypsizigus marmoreus antitumor activity of extracts and polysaccharides. Food Rev Int 11: 207-209. https://doi.org/10.1080/87559129509541034
  11. Jang YA, Lee JT. 2015. The evaluation of antioxidant, anti-inflammatory, and anti-aging of extract solvent and Poria cocos by parts. Kor. J Aesthet Cosmetol 13: 377-383.
  12. Jo SH, Kim TH, Yu YB, Oh JN, Jang MJ, Park KM. 2012. A comparative study on the physiological activities of Auricularia spp. Korean J Food Sci Technol. 44: 350-355. https://doi.org/10.9721/KJFST.2012.44.3.350
  13. Kim HJ, Ahn MS, Kim GH, Kang MH. 2006. Antioxidative and antimicrobial activities of Pleurotus eryngii extracts prepared from different aerial part. Korean J Food Sci Technol. 38: 799-804.
  14. Kim MK. 2020. Analysis of Morphological and Genetic Relationships amomg Isolates of the Artificially Cultivated Mushroom, Hypsizygus marmoreus. Kor. J. Mycol. 48: 313-323. https://doi.org/10.4489/KJM.20200030
  15. Kim SC. 2015. Study on the Antioxidant and Anti-inflammatory Effects of Hypsizigus marmoreus by Cultivars. M. S. Thesis. Gyeongnam National University of Science and Technology. Jinju, Korea.
  16. Kim SC, Kwon HS, Kim CH, Kim HS, Lee CY, Cho SJ. 2016. Comparison of Antioxidant Activities of Pileus and Stipe from White Beech Mushrooms (Hypsizygus marmoreus). J Life Sci 26: 928-935. https://doi.org/10.5352/JLS.2016.26.8.928
  17. Kim SC, Kim HS, Cho SJ. 2018. Antioxidant and tyrosinase inhibitory activity of white beech mushroom (Hypsizygus marmoreus) extracts. J Mushrooms 16: 324-330.
  18. Kwon HJ. 2018. Antiaging and antioxidant activity of Hypsizygus marmoreus extracts. J. Oil & Appl. Sci. 35: 1081-1087. https://doi.org/10.12925/JKOCS.2018.35.4.1081
  19. Lee SY, Choi HD, Yu SN, Kim SH, Park SK, Ahn SC. 2015. Biological activities of Mesembryanthemum crystallinum (Iceplant) extract. J Life Sci 25: 638-645. https://doi.org/10.5352/JLS.2015.25.6.638
  20. Makato O. 1986. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  21. Matsuzawa T, Saitoh H, Sano M, Tomita I, Ohkawa M, Ikekawa T. 1998. Studies on antioxidants of Hypsizygus marmoreus. II. Effects of Hypsizygus marmoreus for antioxidants activites of tumor-bearing mice. Yakugaku Zasshi 118: 476-481. https://doi.org/10.1248/yakushi1947.118.10_476
  22. Na EJ, Jang HH, Kim GR. 2016. Review of Recent Studies and Research Analysis for Anti-oxidant and Anti-aging Materials. Asian J Beauty Cosmetol 14: 481-491. https://doi.org/10.20402/ajbc.2016.0107
  23. Nam CH, Jeong GW, Nah JW. 2018. Preparation and Characterization of Chitosan Microsphere for Encapsulation of Natural Antioxidant with Effective Protection against ROS. Polymer(Korea) 42: 793-799.
  24. Oyaizu M. 1986. Studies on products of browning reaction: Anti oxidative activities of products of browning reaction prepared from glucosamine. Jap. J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  25. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R. 2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC)) of plasma and other biological and food samples. J Agric Food Chem. 51: 3273-3279. https://doi.org/10.1021/jf0262256
  26. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, RiceEvans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  27. Ryu BM, Jeon YJ. 2018. Development of functional food products with natural materials derived from marine resources. Food Sci and Ind 51: 157-164. https://doi.org/10.23093/FSI.2018.51.2.157
  28. Shin BE, Baek IS, Kim JH, Lee YH. 2019. Protease activity and meat-tenderizing effect of Hypsizygus marmoreus. J Mushrooms 17: 235-240.
  29. Singleton VL. 1981. Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv. Food Res 27: 149-242. https://doi.org/10.1016/S0065-2628(08)60299-2
  30. Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, Watanabe M. 1999. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun 36: 47-50. https://doi.org/10.1039/a809656b
  31. Xu X, M Jun JY, Jeong IH. 2007. A study on the antioxidant activity of Hae-Songi mushroom (Hypsizigus marmoreus) hot water extracts. J Korean Soc Food Sci Nutr 36: 1351-1357. https://doi.org/10.3746/JKFN.2007.36.11.1351
  32. Zanabaatar B, Kim MK, Seo GS, Lee YW, Lee JS. 2011. Screening and Physiological Functionality of Hypsizygus marmoreus (White Cultivar) Fruiting Body. Kor. J. Mycol. 39: 185-188. https://doi.org/10.4489/KJM.2010.39.3.185
  33. Zanabaatar B, Kim MK, Seo GS, Lee YW, Lee JS. 2012. Analysis of Nutritional Characteristics and Physiological Functionality of Hypsizygus marmoreus (Brown cultivar). Kor J Mycol 40: 104-108. https://doi.org/10.4489/KJM.2012.40.2.104