DOI QR코드

DOI QR Code

회전식 통풍관 생물반응기 사용에 따른 느타리균의 manganese peroxidase 생산 및 특성

Production of manganese peroxidase from Pleurotus ostreatus using a rotary draft tube bioreactor (RTB) and characterization of its activity

  • 하효철 (대구한의대학교 바이오산업융합학부)
  • Ha, Hyo-Cheol (Department of bio-technology and convergence, Daegu Haany University)
  • 투고 : 2021.10.31
  • 심사 : 2021.11.10
  • 발행 : 2021.12.31

초록

리그닌 분해효소의 생산은 나선형 리본이 있는 새로운 형태의 회전식 통풍관 생물 반응기(RTB)를 사용하여 느타리(Pleurotus ostreatus) No.42에 의해 실시하였다. 락게이즈(laccase)의 최대 생산량은 배양 3일 후 약 8,200 U/bioreactor 수준에 도달한 후 감소하였다. 반면에, 망간퍼옥시데이즈(MnP)의 최대 생산은 6일 배양 후 약 8,400 U/bioreactor의 수준에 도달하였다. 그러나 이 발효조에서 리그닌퍼옥시데이즈(LiP)는 검출되지 않았다. 그 결과 회전식 통풍관 생물 반응기(RTB)가 리그닌 분해효소를 대규모 생산을 위해 성공적으로 생산할 수 있음을 보여주었다. 이 발효기에서 망간퍼옥시데이즈의 정제 과정은 Sepharose CL-6B, Superdex 75 prep grade 및 Mono-Q에 대한 크로마토그래피를 포함하여 정제하였다. 이 주요 효소는 sodium dodecyl sulfate-polyacrylamide겔 전기영동(SDS-PAGE)에서 분자량 36,400, pI 3.95의 등전점(IEF)으로 각각 확인되었다. 이 발효기의 주요 효소 N-말단 서열은 정치 및 진탕배양과 같은 다른 배양조건에서 보고된 MnP3 효소와 동일하였다.

Ligninolytic enzymes were produced by Pleurotus ostreatus No.42, cultivated in a new kind of bioreactor that has a rotating draft tube with a helical ribbon. Maximum laccase (Lac) production (about 8,200 U/bioreactor) was reached after 3 days of incubation, then production decreased. Production of manganese peroxidase (MnP) in this fermenter reached a maximum level of about 8,400 U/bioreactor after 6 days of incubation. Lignin peroxidase (LiP) was not detected under these growth conditions. These results indicate that the rotary draft tube bioreactor (RTB) is compatible with large scale production of ligninolytic enzymes. MnP produced under these fermentation conditions was purified via a multistep process that included chromatography on Sepharose CL-6B, prep grade Superdex 75, and Mono-Q. This major isoenzyme was confirmed to have an apparent molecular weight of 36,400 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and its isoelectric point (IEF) was determined to be 3.95. N-terminal sequencing of the major isoenzyme from this fermentation was identical to that reported for an MnP3 isoenzyme isolated under different cultivation conditions, including stationary and shaking culture.

키워드

참고문헌

  1. Aragao MS, Menezes DB, Ramos LC, Oliveira HS, Bharagava RN, Romanholo Ferreira LF, Teixeira JA, Ruzene DS, Silva DP. 2020. Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. Chemosphere 244: 125432-125441. https://doi.org/10.1016/j.chemosphere.2019.125432
  2. Asses N, Ayed L, Bouallagui H, Ben Rejeb I, Gargouri M, Hamdi M. 2009. Use of Geotrichum candidum for olive mill wastewater treatment in submerged and static culture. Bioresour Technol 100: 2182-2188. https://doi.org/10.1016/j.biortech.2008.10.048
  3. Babic J, Pavko A. 2012. Enhanced enzyme production with the pelleted form of D. squalens in laboratory bioreactors using added natural lignin inducer. J Ind Microbiol Biotechnol 39: 449-457. https://doi.org/10.1007/s10295-011-1036-2
  4. Bilal M, Asgher M, Iqbal HMN. Hu H, Zhang X. 2017. Biotransformation of lignocellulosic materials into value-added products-A review. Int J Biol Macromol 98: 447-458. https://doi.org/10.1016/j.ijbiomac.2017.01.133
  5. Bradford MM. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  6. Camassola M, da Rosa LO, Calloni R, Gaio TA, Dillon AJ. 2013. Secretion of laccase and manganese peroxidase by Pleurotus strains cultivate in solid-state using Pinus spp. sawdust. Braz J Microbiol 44: 207-213. https://doi.org/10.1590/S1517-83822013005000006
  7. Chang Y, Yang D, Li R, Wang T, Zhu Y. 2021. Textile Dye Biodecolorization by Manganese Peroxidase: A Review. Molecules 26: 4403-4418. https://doi.org/10.3390/molecules26154403
  8. Eaton RA, Hale MDC. 1993. Wood cell wall chemistry. In Wood: decay, pests and protection. Chapman and Hall London, 23-24.
  9. Elisashvili V, Penninckx M, Kachlishvili E, Tsiklauri N, Metreveli E, Kharziani T, Kvesitadze G. 2008. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol 99: 457-462. https://doi.org/10.1016/j.biortech.2007.01.011
  10. Gold MH, Alic M. 1993. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57: 605-622. https://doi.org/10.1128/mr.57.3.605-622.1993
  11. Ha HC, Honda Y, Watanabe T, Kuwahara M. 2001. Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Appl Microbiol Biotechnol 55: 704-711. https://doi.org/10.1007/s002530100653
  12. Ha HC. 2019. N-temimal amino acid sequencing analysis of major manganese peroxidase (MnP3) produced by static culture of Pleurotus ostreatus. J Mushrooms 17: 185-190.
  13. Herpoel I, Asther M, Sigoillot JC. 1999. Design and scale-up of a process for manganese peroxidase production using the hypersecretory strain Phanerochaete chrysosporium I-1512. Biotechnol Bioeng 65: 468-473. https://doi.org/10.1002/(SICI)1097-0290(19991120)65:4<468::AID-BIT11>3.0.CO;2-J
  14. Imai Y, Suzuki M, Masamoto M, Nagayasu K. 1993. Amylase production by Aspergillus oryzae in a new kind of fermentor with a rotary draft tube. J Ferment Technol 76: 459-464.
  15. Itoh H, Kuwahara M. 1998. Biodegradation of chemical pollunts by using white-rot fungi. Bioindustry 15: 5-13.
  16. Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M. 2017. Biodegradation of polycyclic aromatic hydrocarbons(PAHs) by fungal enzyme: A review. J Environ Sci 51: 52-74. https://doi.org/10.1016/j.jes.2016.08.023
  17. Kuwahara M, Glenn JK, Morgan MA, Gold MH. 1984. Separation and characterization of two extracellular H2O2-dependent oxidase from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169: 247-250. https://doi.org/10.1016/0014-5793(84)80327-0
  18. Laugero C, Sigoillot JC, Moukha S, Frasse P, Bellon-Fontaine M, Bonnarme P, Mougin C, Asther M. 1996. Selective hyperproduction of manganese peroxidases by Phanerochaete chrysosporium I-1512 immobilized on nylon net in a bubble-column reactor. Appl Microbio Biotechnol 44: 717-723. https://doi.org/10.1007/BF00178608
  19. Leisola MSA, Fiechter A. 1985. Ligninase production in agitated conditions by Phanerochaete chrysosporium. FEMS Microbiol Lett 29: 33-36. https://doi.org/10.1016/0378-1097(85)90266-6
  20. Li X, Zheng Y. 2017. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnol Adv 35: 466-489. https://doi.org/10.1016/j.biotechadv.2017.03.010
  21. Li ZM, Liu Y, Chi ZY, Chen SL. 2011. Effects of Pluronic F68 on manganese peroxidase production by pelletized Phanerochaete chrysosporium. Appl Biochem Biotechnol 164: 487-496. https://doi.org/10.1007/s12010-010-9150-6
  22. Martinez AT, Ruiz-Duenas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, 2017. Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 35: 815-831. https://doi.org/10.1016/j.biotechadv.2017.06.003
  23. Mendez-Hernandez JE, Eibes G, Arca-Ramos A, Lu-Chau TA, Feijoo G, Moreira MT, Lema JM. 2015. Continuous removal of nonylphenol by versatile peroxidase in a two-stage membrane bioreactor. Appl Biochem Biotechnol 175: 3038-3047. https://doi.org/10.1007/s12010-014-1474-1
  24. Moreira MT, Sanroman A, Feijoo G, Lema JM. 1996. Control of pellet morphology of filamentous fungi in fluidized bed bioreactors by means of a pulsing flow. Application to Aspergillus niger and Phanerochaete chrysosporium. Enzyme Microb Technol 19: 261-266. https://doi.org/10.1016/0141-0229(95)00244-8
  25. Moreira MT, Feijoo G, Palma C, Lema JM. 1997. Continuous production of manganese peroxidase by Phanerochaete chrysosporium immobilized on polyurethane foam in a pulsed packed-bed bioreactor. Biotechnol Bioeng 56: 130-137. https://doi.org/10.1002/(SICI)1097-0290(19971020)56:2<130::AID-BIT2>3.0.CO;2-Q
  26. Orth AB, Tien, M. 1991. Overproduction of lignin-degrading enzymes by an isolate of Phanerochaete chrysosporium. Appl Environ Microbiol 57: 2591-2596. https://doi.org/10.1128/aem.57.9.2591-2596.1991
  27. Pollegioni L, Tonin F, Rosini E. 2015. Lignin-degrading enzyme (review). FEBS J 282: 1190 -1213. https://doi.org/10.1111/febs.13224
  28. Steffen KT, Hatakka A, Hofrichter M, 2003. Degradation of benzo[a]pyrene by the litter-decomposing Basidiomycete Stropharia coronilla: role of manganese peroxidase. Appl Environ Microbiol 69: 3957-3964. https://doi.org/10.1128/AEM.69.7.3957-3964.2003
  29. Tien M., Kirk T.K. 1983. Lignin-degrading enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science 221: 661-663. https://doi.org/10.1126/science.221.4611.661
  30. Veiter L, Rajamanickam V, Herwig C. 2018. The filamentous fungal pellet-relationship between morphology and productivity. Appl Microbiol Biotechnol 102: 2997-3006. https://doi.org/10.1007/s00253-018-8818-7
  31. Wang X, Yao B, Su X. 2018. Linking enzymatic oxidative degradation of lignin to organics Detoxification (review). Int J Mol Sci 19: 3373-3390. https://doi.org/10.3390/ijms19113373
  32. Yang X, Wang J, Zhao X, Wang Q, Xue R. 2011. Increasing manganese peroxidase production and biodecolorization of triphenylmethane dyes by novel fungal consortium. Bioresour Technol 102: 10535-10541. https://doi.org/10.1016/j.biortech.2011.06.034
  33. Yoshida S, Yonehara S, Minami S, Ha HC, Iwahara K, Watanabe T, Honda Y, Kuwahara M. 1996. Production and characterization of ligninolytic enzymes of Bjerkandera adusta grown on wood/wheat bran culture and production of these enzymes using rotary-solid fermenter. Mycoscience 37: 417-425. https://doi.org/10.1007/BF02460998