ON WEAKLY QUASI n-ABSORBING SUBMODULES

MOHAMED ISSOUAL, NAJIB MAHDOU, AND MOUTOU ABDOU SALAM MOUTUI

Abstract. Let R be a commutative ring with $1 \neq 0$, n be a positive integer and M be an R-module. In this paper, we introduce the concept of weakly quasi n-absorbing submodule which is a proper generalization of quasi n-absorbing submodule. We define a proper submodule N of M to be a weakly quasi n-absorbing submodule if whenever $a \in R$ and $x \in M$ with $0 \neq a^n x \in N$, then $a^n \in (N :_R M)$ or $a^{n-1} x \in N$. We study the basic properties of this notion and establish several characterizations.

1. Introduction

Throughout the whole paper, all rings are assumed to be commutative with $1 \neq 0$, all modules are considered to be unitary and n is a positive integer. Let R be a ring with $1 \neq 0$, M be an R-module and N be a proper submodule of M. In [9], the authors introduced and investigated the concept of 2-absorbing (resp., weakly 2-absorbing) submodules. They defined a submodule N to be a 2-absorbing submodule (resp., weakly 2-absorbing submodule) of M if whenever $a,b \in R$ and $m \in M$ with $abm \in N$ (resp., $0 \neq abm \in N$), then $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$. A more general concept than 2-absorbing submodule is the concept n-absorbing submodule. From [10], a proper submodule N of M is said to be an n-absorbing (resp., strongly n-absorbing) submodule of M if whenever $a_1 \cdots a_n m \in N$ for $a_1,\ldots,a_n \in R$ and $m \in M$ (resp., $I_1 \cdots I_n L \subset N$ for ideals I_1,\ldots,I_n of R and a submodule L of M), then either $a_1 \cdots a_n \in (N :_R M)$ (resp., $I_1 \cdots I_n \subset (N :_R M)$) or there are $n-1$ of a_i’s (resp., I_i’s) whose product with m (resp., L) is in N. Recall that a proper submodule N of M is called semiprime if whenever $r \in R$ and $m \in M$ with $r^2 m \in N$, then $rm \in N$. For more details about the concept of n-absorbing and related notions, we refer the reader to [3,4,6,7,13].

In this paper, we introduce the concept of weakly quasi n-absorbing submodule which is a proper generalization of quasi n-absorbing submodule. We define a proper submodule N of M to be a weakly quasi n-absorbing submodule if whenever $a \in R$ and $x \in M$ with $0 \neq a^n x \in N$, then $a^n \in (N :_R M)$ or...
We study the basic properties of this notion and establish several characterizations.

We denote by \sqrt{I}, the radical of an ideal I of R. Let N be a submodule of an R-module M. We denote by $(N :_R M)$, the residual of N by M, that is, the set of all $r \in R$ such that $rM \subseteq N$. For $x \in M$, we denote by $\text{ann}(x)$, the annihilator of x, that is, the set of all $r \in R$ such that $rx = 0$.

2. Results

It is worthwhile recalling that a proper submodule N of an R-module M is a quasi n-absorbing submodule for some positive integer $n \geq 1$, if $a^n x \in N$ for some $a \in R$ and $x \in M$ with $a^n x \in N$, then either $a^{n-1} x \in N$ or $a^n \in (N :_R M)$. Now, we recall the concept of weakly quasi n-absorbing submodule defined in the introduction.

Definition. A proper submodule N of an R-module M is called a weakly quasi n-absorbing submodule of M if $0 \neq a^n x \in N$ for some $a \in R$ and $x \in M$, then $a^n \in (N :_R M)$ or $a^{n-1} x \in N$.

Notice that from the previous definition, every quasi n-absorbing submodule is clearly a weakly quasi n-absorbing submodule. However, a weakly quasi n-absorbing submodule need not be a quasi n-absorbing submodule, as illustrated in the next example.

Example 2.1. Let $M := \mathbb{Z}/12\mathbb{Z}$ as \mathbb{Z}-module and $N = \{0\}$. Clearly, N is a weakly quasi 2-absorbing submodule of M. However, N is not a quasi 2-absorbing submodule of M since $(N : M) = 12\mathbb{Z}$ and $2 \cdot 3 \in N$ and neither $2^2 \in (N :_R M)$ nor $2 \cdot \ldots \cdot 3 \in N$.

Now, we introduce the following definition which will be useful for studying the weakly quasi n-absorbing submodules.

Definition. Let R be a ring, M be an R-module and N be a weakly quasi n-absorbing submodule of M. An element $a \in R$ is called an unbreakable element of N if there exists an element $x \in M$ such that $a^n x = 0$ and neither $a^n \in (N :_R M)$ nor $a^{n-1} x \in N$.

It is worthwhile mentioning that if N is a weakly quasi n-absorbing submodule of M and there is no unbreakable element, then N is a quasi n-absorbing submodule of M. The next lemma gives some basic facts about unbreakable elements.

Lemma 2.2. Let R be a ring, M be an R-module and N be a proper weakly quasi n-absorbing submodule of M. If $a \in R$ is an unbreakable element of N. Then the following statements hold:

1. $a^n N = 0$.
2. $a + s$ is an unbreakable element of N for every $s \in (N :_R M)$.
Proof. (1) Let \(a \) be an unbreakable element of \(N \). Then there exists \(x \in M \) with \(a^n x = 0 \) but neither \(a^n \in (N :_R M) \) nor \(a^{n-1} x \in N \). Assume by the way of contradiction that \(0 \neq a^n N \), then \(0 \neq a^s y \in N \) for some \(y \in N \). Since \(N \) is a weakly quasi \(n \)-absorbing submodule of \(M \) and \(a^n \notin (N :_R M) \), then \(a^{n-1} y \in N \). On the other hand, \(0 \neq a^n (x + y) = a^s y \in N \) and \(a^n \notin (N :_R M) \) implies that \(a^{n-1} (x + y) \in N \). Thus \(a^{n-1} x \in N \), which is a contradiction. Hence, \(a^n N = 0 \).

(2) Since \(a \) is an unbreakable element of \(N \), then there exists \(x \in M \) with \(a^n x = 0 \) and neither \(a^n \in (N :_R M) \) nor \(a^{n-1} x \in N \). Now let \(s \in (N :_R M) \). Assume that \(0 \neq (a + s)^n x \). We have:

\[
(a + s)^n x = \sum_{j=0}^{n-1} \binom{n}{j} a^j s^{n-j} x \in N.
\]

The fact that \(N \) is a weakly quasi \(n \)-absorbing submodule of \(M \), gives either \((a + s)^{n-1} x \in N\) or \((a + s)^n \in (N :_R M)\). Two cases are then possible:

Case 1 : \((a + s)^{n-1} x \in N\). Then one can easily check that \(a^{n-1} x \in N \) since for all \(j = 1, \ldots, n - 1 \), \(a^j s^{n-1-j} x \in N \), the desired contradiction.

Case 2 : \((a + s)^n \in (N :_R M)\). Since \(a^j s^{n-j} \in (N :_R M) \), then \(a^n \in (N :_R M) \). Hence, \((a + s)^n x = 0\) and neither \((a + s)^{n-1} x \in N\) nor \((a + s)^n \in (N :_R M)\). Thus, it follows that \(a + s \) is an unbreakable element of \(N \).

Finally, \(a + s \) is an unbreakable element of \(N \), as desired. \(\square\)

Theorem 2.3. Let \(R \) be a ring, \(M \) be an \(R \)-module and \(N \) be a proper weakly quasi \(n \)-absorbing submodule which is not quasi \(n \)-absorbing submodule of \(M \). Then \((N :_R M) \subseteq \sqrt{\Ann(N)}\).

Proof. Since \(N \) is a weakly quasi \(n \)-absorbing submodule which is not quasi \(n \)-absorbing submodule of \(M \), then there exists an unbreakable element \(b \) of \(N \). By Lemma 2.2(2), for every \(a \in (N :_R M) \), we have \((b + a)^n N = 0\). So, \(a + b \in \sqrt{\Ann(N)} \). By Lemma 2.2(1), \(b \in \sqrt{\Ann(N)} \) and so \(a \in \sqrt{\Ann(N)} \). Hence, \((N :_R M) \subseteq \sqrt{\Ann(N)}\), as desired. \(\square\)

Let \(R \) be a ring and \(M \) be an \(R \)-module. Recall that \(M \) is called a multiplication module if for each submodule \(N \) of \(M, N = IM \) for some ideal \(I \) of \(R \). In this case, we can take \(I = (N : R M) \) [11]. Also, recall that for a submodule \(N \) of \(M \), if \(N = IM \) for some ideal \(I \) of \(R \), then \(I \) is called a presentation ideal of \(N \). Clearly, every submodule of \(M \) has a presentation ideal if and only if \(M \) is a multiplication module. Let \(N \) and \(K \) be submodules of a multiplication \(R \)-module \(M \) with \(N = I_1 M \) and \(K = I_2 M \) for some ideals \(I_1 \) and \(I_2 \) of \(R \), the product \(N \) and \(K \) denoted by \(NK \) is defined by \(NK = I_1 I_2 M \). From [1, Theorem 3.4], the product of \(N \) and \(K \) is independent of presentation of \(N \) and \(K \). Moreover, for \(a, b \in M \), by \(ab \), we mean the product of \(Ra \) and \(Rb \). Clearly, \(NK \) is a submodule and \(NK \subseteq N \cap K \) [1]. A submodule \(N \) of an \(R \) module \(M \) is called nilpotent if \((N :_R M)^k N = 0\) for some positive integer \(k \) [2]. The next corollary is a consequence of Theorem 2.3.
Corollary 2.4. Let R be a Noetherian ring and M be an R-module. If N is a proper weakly quasi n-absorbing submodule which is not quasi n-absorbing submodule of M. Then:

1. N is nilpotent.
2. If M is a faithful multiplication module, then $N^p = 0$ for some positive integer p.

Proof. (1) By Theorem 2.3, we have $(N :_RM) \subseteq \sqrt{\text{ann}(N)}$. Since R is Noetherian, then there exists a positive integer $k \geq 1$ such that $(N :_RM)^k \subseteq \text{ann}(N)$. So, $(N :_RM)^kN = 0$. Hence, N is a nilpotent submodule of M.

(2) By assertion (1) above, we have $(N :_RM)^kN = 0$ for some positive integer $k \geq 1$. It follows that $(N :_RM)^{k+1} \subseteq ((N :_RM)^kN :_RM) = (0 :_RM) = 0$, as M is faithful. Therefore, $(N :_RM)^{k+1} = 0$. □

Let N be a proper submodule of a nonzero R-module M. Then the M-radical of N, denoted here by $M - \sqrt{N}$ is defined in [12] to be the intersection of all prime submodules of M containing N. It is shown in [11, Theorem 2.12] that if N is a proper submodule of M, then $M - \sqrt{N} = M - \sqrt{(N :_RM)M}$. The next corollary is an application of Theorem 2.3.

Corollary 2.5. Let R be a ring, M be a multiplication R-module and N be a proper faithful weakly quasi n-absorbing submodule which is not quasi n-absorbing submodule of M. Then $N \subseteq M - \sqrt{0}$.

Proof. Since M is a multiplication module, then $N = (N :_RM)M$. So, by Theorem 2.3, it follows that $N = (N :_RM)M \subseteq \sqrt{0}M = M - \sqrt{0}$, as N is faithful.

Recall that a ring is called von Neumann regular if, for every $x \in R$ there exists $y \in R$ such that $x^2y = x$. It is well known that a commutative ring is von Neumann regular if and only if every proper ideal is radical. The next corollary is another consequence of Theorem 2.3.

Corollary 2.6. Let R be a von Neumann regular ring, M be an R-module and N be a proper weakly quasi n-absorbing submodule which is not quasi n-absorbing submodule of M. Then $(N :_RM)N = 0$.

Proof. Assume that R is a von Neumann regular ring. Since N is a weakly quasi n-absorbing submodule which is not quasi n-absorbing submodule of M, then by Theorem 2.3, $(N :_RM) \subseteq \sqrt{\text{ann}(N)}$. Using the fact that R is a von Neumann regular ring, then $\sqrt{\text{ann}(N)} = \text{ann}(N)$. Thus, it follows that $(N :_RM)N = 0$. □

The next corollary is another application of Corollary 2.6.

Corollary 2.7. Let R be a von Neumann regular ring, M be a faithful R-module and N be a proper weakly quasi n-absorbing submodule which is not quasi n-absorbing submodule of M. Then $(N :_RM)^2 = 0$.
Theorem 2.8. Let R be a ring with 2 is unit in R and M be an R-module. If N is a weakly quasi 2-absorbing submodule which not a quasi 2-absorbing submodule, then $(N:_R M)^2 N = 0$.

Proof. By Lemma 2.2, for every submodule, then N is a weakly quasi 2-absorbing submodule which not a quasi 2-absorbing submodule of M.

In the following theorem, we establish that for a ring R in which 2 is unit of R and M be an R-module, we have $(N:_R M)^2 N = 0$ for every weakly quasi 2-absorbing submodule N which is not quasi 2-absorbing submodule of M.

Theorem 2.9. Let R be a ring with 2 is unit in R and M be an R-module. If N is a weakly quasi 2-absorbing submodule which not a quasi 2-absorbing submodule, then $(N:_R M)^2 N = 0$.

Proof. By Corollary 2.6, we have $(N:_R M)N = 0$. So, $(N:_R M)^2 \subseteq ((N:_R M)N:_R M) = (0:_R M) = \text{ann}(M) = 0$ as M is faithful and so $(N:_R M)^2 = 0$, as desired. □

Let M be an R-module and N be a proper submodule of M. We say that N is a weakly strongly quasi n-absorbing submodule of M if whenever $0 \neq I^n L \subseteq N$ for some proper ideal I of R and a proper submodule of M, then either $I^n \subseteq (N:_R M)$ or $I^{n-1} L \subseteq N$. It is clear that a weakly strongly quasi n-absorbing submodule is a weakly quasi n-absorbing submodule. In the next theorem, we show that the notions weakly strongly quasi n-absorbing submodule and weakly quasi n-absorbing submodule collapse in the case the ring R is a principal domain.

Theorem 2.10. Let R be a principal domain and N be a proper submodule of an R-module M. Then the following assertions are equivalent:

1. N is a weakly quasi n-absorbing submodule of M.
2. N is a weakly strongly quasi n-absorbing submodule of M.

Proof. (1) \Rightarrow (2) Let $0 \neq I^n L \subseteq N$ for some proper ideal I of R and a proper submodule L of M. Since R is a principal domain, then there exists an element $a \in R$ such that $I = Ra$. So, $0 \neq a^n L \subseteq N$. Assume that $a^n \notin (N:_R M)$, we claim that $a^{n-1} L \subseteq N$. Indeed, let $x \in L$. If $0 \neq a^n x$, then $a^{n-1} x \in N$ since N is a weakly quasi n-absorbing submodule and $a^n \notin (N:_R M)$. Now assume that $a^n x = 0$. Since $a^n L \neq 0$, then $0 \neq a^n y = a^n(x + y) \in N$ for some $y \in N$. Consequently, $a^{n-1}(x + y) \in N$ and so $a^{n-1} x \in N$ as $a^{n-1} y \in N$ which is a weakly quasi n-absorbing submodule. Therefore, $a^{n-1} L \subseteq N$.

(2) \Rightarrow (1) Straightforward. □

Proposition 2.11. Let N be a proper submodule of M. Then the following statements are equivalent:

1. If $0 \neq I^n L \subseteq N$ for some ideal I of R and submodule L of M, then either $I^n \subseteq (N:_R M)$ or $I^{n-1} L \subseteq N$.

Proof. By Theorem 2.9, we have $(N:_R M)^2 N = 0$. So, $(N:_R M)^2 \subseteq ((N:_R M)N:_R M) = (0:_R M) = \text{ann}(M) = 0$ as M is faithful and so $(N:_R M)^2 = 0$, as desired. □
(2) If $0 \neq I^n x \subseteq N$ for some ideal I of R and $x \in M$, then $I^n \subseteq (N :_R M)$ or $I^{n-1} x \subseteq N$.

Proof. (1) \Rightarrow (2) Straightforward.

(2) \Rightarrow (1) Suppose that $0 \neq I^n L \subseteq N$ for some ideal I of R and submodule L of M. Assume that $I^n \not\subseteq (N :_R M)$ and we show that $I^{n-1} L \subseteq N$. By the way of contradiction, suppose $I^{n-1} L \not\subseteq N$. Then there exists an element x of L with $I^{n-1} x \not\subseteq N$. Two cases are then possible:

Case 1: If $0 \neq I^n x \subseteq N$. Since $I^n \not\subseteq (N :_R M)$, from assumption it follows that $I^{n-1} x \subseteq N$, which is a contradiction.

Case 2: If $I^n x = 0$. The fact that $0 \neq I^n L \subseteq N$, there exists an element y of L with $0 \neq I^n y \subseteq N$. Now $0 \neq I^n (x + y) = I^n y \subseteq N$. Since $I^n \not\subseteq (N :_R M)$, then it follows that $I^{n-1} y \subseteq N$ and $I^{n-1} (x + y) \subseteq N$. Hence, $I^{n-1} x \subseteq N$, which is a contradiction again.

Finally, $I^{n-1} L \subseteq N$. □

In the next proposition, we study the stability of homomorphic image of a weakly quasi n-absorbing submodule.

Proposition 2.11. Let N, L be submodules of an R-module M with $L \subseteq N$. If N is a weakly quasi n-absorbing submodule of M, then N/L is a weakly quasi n-absorbing submodule of M/L. The converse holds if L is a weakly quasi n-absorbing submodule of M.

Proof. Assume that N is a weakly quasi n-absorbing submodule of M. Let $a \in R$ and $x + L \in M/L$ with $0_{M/L} \neq a^n (x + L) \in N/L$. If $a^n \in (N :_R M)$, then we are done. We may assume that $a^n \not\in (N :_R M)$. The fact that $0_{M/L} \neq a^n (x + L)$ implies that $a^n x \in N$ and $a^n x \not\in L$. So, $0 \neq a^n x \in N$. Since N is a weakly quasi n-absorbing submodule of M and $a^n \not\in (N :_R M)$, then $a^{n-1} x \in N$. Therefore, $a^{n-1} (x + L) \in N/L$ and so N/L is a weakly quasi n-absorbing submodule of M/N. Conversely, assume that L is a weakly quasi n-absorbing submodule of M and N/L is a weakly quasi n-absorbing submodule of M/L. Let $a \in R$ and $x \in M$ with $0 \neq a^n x \in N$. Then $a^n (x + L) \in N/L$. If $a^n (x + L) = 0_{M/L}$, then $0 \neq a^n x \in L$. Using the fact that L is a weakly quasi n-absorbing submodule of M, then either $a^{n-1} x \in L \subseteq N$ or $a^n \in (L :_R M) \subseteq (N :_R M)$. If $a^n (x + L) \neq 0_{M/L}$, then either $a^n \in (N/L :_R M/L)$ or $a^{n-1} (x + L) \in N/L$. Hence, $a^n \in (N :_R M)$ or $a^{n-1} x \in N$. Finally, N is a weakly quasi n-absorbing submodule of M, as desired. □

Recall that from [8, Definition 2.20(2)], a submodule N of an R-module M is said to be a strongly (m, n)-closed submodule if whenever I is an ideal and L is a submodule of M with $I^m L \subseteq N$ implies that $I^n \subseteq (N :_R M)$ or $I^{n-1} L \subseteq N$.

Theorem 2.12. Let N be a proper submodule of an R-module M. Then the following statements are equivalent:

(1) If $0 \neq I^n K \subseteq N$ for some ideal I of R and submodule K of M, then either $I^n \subseteq (N :_R M)$ or $I^{n-1} K \subseteq N$.

(2) For any ideal \(I \) of \(R \) and \(N \subseteq L \) a submodule of \(M \) with \(0 \neq I^n L \subseteq N \) implies \(I^n \subseteq (N :_RM) \) or \(I^{n-1} L \subseteq N \).

Proof. (1) \(\Rightarrow \) (2) Straightforward.

(2) \(\Rightarrow \) (1) Let \(I \) be an ideal of \(R \) and \(K \) be a submodule of \(M \) with \(0 \neq I^n K \subseteq N \). Then \(0 \neq I^n(K + N) \subseteq N \). Since \(N \) is a strongly \((m,n)\)-closed submodule of \(M \) and \(L := K + N \supseteq N \), then \(I^n \subseteq (N :_RM) \) or \(I^{n-1} L = I^n K + N \subseteq N \) from the hypothesis (2). Thus \(I^n \subseteq (N :_RM) \) or \(I^{n-1} K \subseteq N \).

In the next theorem we show the relationship between a weakly quasi \(n \)-absorbing submodule \(N \) and the ideal \((N :_Rx)\) of \(R \), where \(x \in M \setminus N \). Recall from [5] that an ideal \(I \) of a ring \(R \) is a weakly semi \(n \)-absorbing ideal of \(R \) if \(0 \neq x^{n+1} + I \) implies \(x^n \in I \).

Theorem 2.13. Let \(M \) be an \(R \)-module and \(N \) be a proper submodule of \(M \).

1. If \((N :_Rx)\) is a weakly semi \(n \)-absorbing ideal of \(R \) for every \(x \in M \setminus N \), then \(N \) is a weakly quasi \(n \)-absorbing submodule of \(M \).

2. Assume that \(N \) is a weakly quasi \(n \)-absorbing submodule of \(M \). Let \(x \) be an element of \(M \setminus N \) such that \(\text{ann}(x) \) is a quasi \(n \)-absorbing ideal of \(R \). Then \((N :_Rx)\) is a weakly quasi \(n \)-absorbing ideal of \(R \) for each \(x \in M \setminus N \).

Proof. (1) Let \(0 \neq a^ny \in N \) for some \(a \in R \) and \(y \in M \). If \(y \in N \), then we are done. We may assume \(y \in M \setminus N \). If \(a^n \in (N :_RM) \), then we are done. So, we may assume \(a^n \notin (N :_RM) \) and so \(0 \neq a^n \). Since \(a^n \in (N :_Ry) \) which is a weakly semi \(n \)-absorbing ideal of \(R \), then \(a^{n-1} \in (N :_Ry) \) and so \(a^{n-1}y \in N \). Hence, \(N \) is a weakly quasi \(n \)-absorbing submodule of \(M \).

(2) Let \(x \in M \setminus N \). Suppose that \(0 \neq a^ny \in (N :_Rx) \) and \(a^n \notin (N :_Rx) \) for some \(a \in R \) and \(y \in M \). If \(0 \neq a^nyx \in N \). Since \(N \) is a weakly quasi \(n \)-absorbing submodule of \(M \) and \(a^n \notin (N :_RM) \), then \(a^{n-1}yx \in N \). Hence, \(a^{n-1}y \in (N :_Rx) \). Now, suppose that \(a^nyx = 0 \). From assumption, it follows that \(a^{n-1}y \in \text{ann}(x) \), which implies that \(a^{n-1}y \in (N :_Rx) \). Consequently, \((N :_Rx)\) is a weakly quasi \(n \)-absorbing ideal of \(R \), as desired.

Theorem 2.14. Let \(M \) be a faithful \(R \)-module and \(N \) be a proper submodule of \(M \). If \(N \) is a weakly quasi \(n \)-absorbing submodule of \(R \), then \((N :_RM)\) is a weakly quasi \(n \)-absorbing ideal of \(R \). The converse holds if \(M \) is a cyclic faithful \(R \)-module.

The proof of the previous theorem requires the following lemma.

Lemma 2.15. Let \(N \) be a proper submodule of an \(R \)-module \(M \). Then the following statements are equivalent:

1. \(N \) is a weakly quasi \(n \)-absorbing submodule of \(M \).

2. For every \(a \in R \) and \(L \) a submodule of \(M \) with \(0 \neq a^nL \subseteq N \), then \(a^{n-1}L \subseteq N \) or \(a^n \in (N :_RM) \).
Proof. (1) \Rightarrow (2) Assume that N is a weakly quasi n-absorbing submodule of M. Let $a \in R$ and L be a submodule of M such that $0 \neq a^nL \subseteq N$ and $a^n \notin (N :_RM)$. Let $x \in L$. If $0 \neq a^nx$, then $a^{n-1}x \in N$ (as N is a weakly quasi n-absorbing submodule of R). We may assume that $a^nx = 0$. The fact that $0 \neq a^nL \subseteq N$ gives $0 \neq a^ny \in N$ for some $y \in L$. Since $a^n \notin (N :_RM)$, it follows that $a^{n-1}y \in N$. Set $z = y + x \in L$. So, $a^nz \neq 0$ and with similar argument as above, we get $a^{n-1}z \in L$. Therefore, $a^{n-1}x \in N$. Hence, for every $x \in L$, $a^{n-1}x \in N$. Finally, $a^{n-1}L \subseteq N$.

(2) \Rightarrow (1) Assume that for every $a \in R$ and L a submodule of M with $0 \neq a^nL \subseteq N$, then $a^{n-1}L \subseteq N$ or $a^n \in (N :_RM)$. Let $0 \neq a^n x \in N$ for some $a \in R$ and $x \in M$. Set $L = Rx$. Then $0 \neq a^nL \subseteq N$. From assumption, we get $a^n \in (N :_RM)$ or $a^{n-1}L \subseteq N$ and so $a^{n-1}x \in N$ or $a^n \in (N :_RM)$. Hence, N is weakly quasi n-absorbing submodule of M, as desired. \hfill \Box

Proof of Theorem 2.14. Let $0 \neq a^n b \in (N :_RM)$ for some $a, b \in R$. Since M is a faithful R-module, then $0 \neq a^n bM = a^n(bM) \subseteq N$. By Lemma 2.15, $a^{n-1}(bM) = a^{n-1}bM \subseteq N$ or $a^n \in (N :_RM)$. Hence, $(N :_RM)$ is a weakly quasi n-absorbing ideal of R. Conversely, assume that $(N :_RM)$ is a weakly quasi n-absorbing ideal of R and $M = Rm$ is a cyclic faithful R-module. Let $a \in R$ and $x \in M$ such that $0 \neq a^n x \in N$. Then there exists $b \in R$ such that $x = bm$. So, $0 \neq a^n bm \in N$. Therefore, $0 \neq a^n b \in (N :_Rm) = (N :_RM)$. The fact that $(N :_RM)$ is a weakly quasi n-absorbing ideal of R, gives either $a^n \in (N :_RM)$ or $a^{n-1}b \in (N :_RM)$. Hence, $a^n \in (N :_RM)$ or $a^{n-1}bm = a^{n-1}x \in N$, making N, a weakly quasi n-absorbing submodule of M. \hfill \Box

It is worth to mention that in Theorem 2.14 the condition “M is a faithful R-module” is necessary. Otherwise, if N is a weakly quasi n-absorbing submodule of M, then $(N :_RM)$ need not be a weakly quasi n-absorbing ideal of R, as shown in the next example.

Example 2.16. Consider the \mathbb{Z}-module $M := \mathbb{Z}/16\mathbb{Z}$ and $N = \{0\}$. Observe that $\text{ann}(M) = 16\mathbb{Z}$. So, M is not faithful. On the other hand, N is a weakly quasi 2-absorbing submodule and $(N :_{\mathbb{Z}}M) = 16\mathbb{Z}$ is not a weakly quasi 2-absorbing ideal of \mathbb{Z} since $2 \cdot 4 \notin (N :_{\mathbb{Z}}M)$ but neither $2 \cdot 4 = 8 \in (N :_{\mathbb{Z}}M) = 16\mathbb{Z}$ nor $2 \cdot 4 \in (N :_{\mathbb{Z}}M)$.

Let R be a ring. It is well known that a proper submodule N of an R-module M is said to be a weakly semiprime submodule of M if $0 \neq r^2x \in N$ for some $r \in R$ and $x \in M$, then $rx \in N$. In the next theorem, we show that the class of weakly semiprime submodules is contained in the class of weakly quasi n-absorbing submodules for every positive integer $n \geq 2$.

Theorem 2.17. Let R be a ring, M be an R-module and N be a proper submodule of M. If N is a weakly semiprime submodule of M, then N is a weakly quasi n-absorbing submodule of M for every positive integer $n \geq 2$.
Proof. Let $0 \neq a^n x \in N$ for some $a \in R$, $x \in M$ and for some positive integer $n \geq 2$. Then $0 \neq a^2(a^{n-2}x) \in N$. Since N is a weakly semiprime submodule of M, we get $0 \neq a^{n-1}x \in N$. Hence, N is a weakly quasi n-absorbing submodule of M, as desired. \hfill \square

The following theorem shows that the intersection of a family of weakly semiprime submodules is a weakly quasi-n-absorbing submodule.

Theorem 2.18. Let R be a ring, M be an R-module. Let $(N_i)_{i \in I}$ be a family of weakly semiprime submodules of M. Then $\bigcap_{i \in I} N_i$ is a weakly quasi n-absorbing submodule of M for all positive integer $n \geq 2$.

Proof. Suppose that $0 \neq a^n x \in N := \bigcap_{i \in I} N_i$ for some $a \in R$ and $x \in M$. Then $0 \neq a^n x \in N_i$ for all $i \in I$. Since N_i is a weakly semiprime module, then $ax \in N_i$ for all $i \in I$. Therefore, $a^{n-1}x = a^{n-2}(ax) \in N_i$ for all $i \in I$ and so $a^{n-1}x \in N$. Hence, $\bigcap_{i \in I} N_i$ is a weakly quasi n-absorbing submodule of M for all positive integer $n \geq 2$. \hfill \square

Theorem 2.19. Let M_1, M_2 be R-modules with $M = M_1 \oplus M_2$, n be a positive integer and N_1 (resp., N_2) be a proper submodule of M_1 (resp., M_2). Then the following statements are equivalent:

1. $N_1 \oplus M_2$ (resp., $M_1 \oplus N_2$) is a weakly quasi n-absorbing submodule of M which is not a quasi n-absorbing submodule.

2. If N_1 (resp., N_2) is a weakly quasi n-absorbing submodule of M_1 (resp., M_2) which is not a quasi n-absorbing submodule of M_1 (resp., M_2) and $a^n M_2 = 0$ (resp., $a^n M_1 = 0$) for every unbreakable element a of N_1 (resp., N_2).

The proof of the previous theorem needs the following lemma.

Lemma 2.20. Let M_1, M_2 be R-modules with $M = M_1 \oplus M_2$, n be a positive integer and N_1 (resp., N_2) be proper weakly quasi n-absorbing submodule of M_1 (resp., M_2). Let $a \in R$. Then the following statements are equivalent:

1. a is an unbreakable element of N_1 (resp., N_2).

2. a is an unbreakable element of $N_1 \oplus M_2$ (resp., $M_1 \oplus N_2$).

Proof. Assume that a is an unbreakable element of N_1. Then there exists $x \in M_1$ with $a^nx = 0$ and neither $a^n \in (N_1 :_RM_1)$ nor $a^{n-1}x \in N_1$. Then $a^n(x, 0) = (0, 0)$ and neither $a^n \in (N_1 \oplus M_2 :_RM_1 \oplus M_2)$ nor $a^{n-1}(x, 0) \in N_1 \oplus M_2$. Hence, a is an unbreakable element of $N_1 \oplus M_2$. Conversely, assume that $a \in R$ is an unbreakable element of $N_1 \oplus M_2$. Then there exists $(x, y) \in M_1 \oplus M_2$ with $a^n(x, y) = (0, 0)$ and neither $a^n \in (N_1 \oplus M_2 :_RM_1 \oplus M_2)$ nor $a^{n-1}(x, y) \in N_1 \oplus M_2$. Hence, $a^n x = 0$ for $x \in M_1$ and neither $a^n \in (N_1 :_RM_1)$ nor $a^{n-1}x \in N_1$. Thus, a is an unbreakable element of N_1.

With similar proof as above, one can easily show that a is an unbreakable element of N_2 if and only if a is an unbreakable element of $M_1 \oplus N_2$. \hfill \square
Proof of Theorem 2.19. (1) ⇒ (2) Assume that $N_1 \oplus M_2$ is a weakly quasi n-absorbing submodule of M which is not a quasi n-absorbing submodule. Then by Proposition 2.11, $N_1 \simeq N_1 \oplus M_2$ is a weakly n-absorbing submodule of M_1. Now, by Lemma 2.20, it follows that N_1 is not a quasi n-absorbing submodule of M_1 since N_1 admits an element which is unbreakable, $a \in R$, as a is an unbreakable element of $N_1 \oplus M_2$. It remains to show that if a is an unbreakable element of N_1, then $a^n M_2 = 0$. Assume by way of contradiction that a is an unbreakable element of N_1 and $a^n M_2 \neq 0$. Then $a^n y \neq 0$ for some $y \in M_2$. Since a is an unbreakable element of N_1, then there exists $x \in M_1$ with $a^n x = 0$ and neither $a^n \in (N_1 :_R M_1)$ nor $a^{n-1} \in N_1$. Since $0 \neq a^n (y, x) \in N_1 \oplus M_2$, then the fact that $N_1 \oplus M_2$ is a weakly quasi n-absorbing submodule of $M_1 \oplus M_2$ and $a^n \notin (N_1 \oplus M_2 : N_1 \oplus M_2)$ give that $a^{n-1} x \in N_1$, which is a contradiction. Hence, $a^n M_2 = 0.$

(2) ⇒ (1) Assume that N_1 is a weakly quasi n-absorbing which is not quasi n-absorbing submodule of M_1 and $a^n M_2 = 0$ for every unbreakable a element of N_1. Let $b \in R$ and $(x, y) \in M_1 \oplus M_2$ with $0 \neq b^n (x, y) \in N_1 \oplus M_2$. If $0 \neq b^n x \in N_1$, then either $b^n \in (N_1 \oplus M_2 :_R M)$ or $b^{n-1} (x, y) \in N_1 \oplus M_2$. Now, suppose that $b^n = 0$ and neither $b^n \in (N_1 :_R M_1)$ nor $b^{n-1} \in N_1$, then b is an unbreakable element of N_1. From assumption, we have $b^n M_2 = 0$, and so $b^n (x, y) = 0$, which is a contradiction. Therefore, either $b^n \in (N_1 \oplus M_2 :_R M_1 \oplus M_2)$ or $b^{n-1} (x, y) \in N_1 \oplus M_2$. Finally, we conclude that $N_1 \oplus M_2$ is a weakly quasi n-absorbing submodule of M. Now the fact $N_1 \oplus M_2$ is not a quasi n-absorbing submodule of M follows from Lemma 2.20. The proof is complete. □

Now we establish some facts for $N_1 \oplus N_2$ to be a quasi n-absorbing submodule of $M_1 \oplus M_2$ for some positive integer $0 < n$.

Theorem 2.21. Let M_1, M_2 be R-modules and N_1 (resp., N_2) be a submodule of M_1 (resp., M_2). If $N_1 \oplus N_2$ is a weakly quasi n-absorbing submodule of $M = M_1 \oplus M_2$ that is not quasi n-absorbing submodule for some positive integer $n > 0$, then one of the following two assertions hold:

1. N_1 and N_2 are weakly quasi n-absorbing submodules and if there exists an unbreakable element a of N_1, then $a^n N_2 = 0$.
2. N_1 and N_2 are weakly quasi n-absorbing submodules and if there exists an unbreakable element b of N_2, then $b^n N_1 = 0$.

Proof. (1) Suppose that $N_1 \oplus N_2$ is a weakly quasi n-absorbing submodule that is not quasi n-absorbing submodule of M. Let $a \in R$ and $x \in M_1$ with $0 \neq a^n x \in N_1$. Then $0 \neq a^n (x, 0) \in N_1 \oplus N_2$ which is a weakly quasi n-absorbing submodule of M. It follows that $a^{n-1} x \in N_1$ or $a^n \in (N_1 :_R M_1)$. Hence, N_1 is a weakly quasi n-absorbing submodule of M_1. The same argument shows that N_2 is a weakly quasi n-absorbing submodule of M_2. Now, suppose that N_1 admits an unbreakable element $a \in R$. Then $a^n x = 0$ but neither $a^n \in (N_1 :_R M_1)$ nor $a^{n-1} x \in N_1$ for some $x \in M_1$. Assume that $a^n N_2 \neq 0$. If
Then there exists $z \in N_2$ such that $0 \neq a^n z \in N_2$, so $0 \neq a^n(x, z) = (0, a^n z) \in \mathcal{N}_1 \oplus \mathcal{N}_2$ which is a weakly quasi n-absorbing submodule of M. So, either $a^{n-1}(x, z) \in \mathcal{N}_1 \oplus \mathcal{N}_2$ or $a^n \in (\mathcal{N}_1 \oplus \mathcal{N}_2 :_R M)$. Therefore, $a^{n-1}x \in \mathcal{N}_1$ or $a^n \in (\mathcal{N}_1 :_R M_1)$, which is a contradiction. Hence, $a^n N_2 = 0$.

(2) Similar proof as assertion (1) above.

Remark 2.22. Let \mathcal{N}_1 (resp., \mathcal{N}_2) be a submodule of M_1 (resp., M_2). If \mathcal{N}_1 and \mathcal{N}_2 are weakly quasi n-absorbing submodules, then $\mathcal{N}_1 \oplus \mathcal{N}_2$ need not be a weakly quasi n-absorbing submodule of $M_1 \oplus M_2$. For instance, take $M_1 = M_2 = \mathbb{Z}$ and $\mathcal{N}_1 = 2^2 \mathbb{Z}$, $\mathcal{N}_2 = 3 \mathbb{Z}$. It is clear that \mathcal{N}_1 and \mathcal{N}_2 are weakly quasi 2-absorbing submodules of \mathbb{Z} since they are quasi 2-absorbing submodules.

However, $\mathcal{N}_1 \oplus \mathcal{N}_2$ is not a weakly quasi 2-absorbing submodule of $M_1 \oplus M_2$ since $2^2(3, 3) \in 2^2 \mathbb{Z} \oplus 3 \mathbb{Z}$, but neither $2^2 = 4 \not\in (2^2 \mathbb{Z} \oplus 3 \mathbb{Z} :_2 \mathbb{Z} \oplus \mathbb{Z}) = 12 \mathbb{Z}$ nor $2(3, 3) = (6, 6) \not\in 2^2 \mathbb{Z} \oplus 3 \mathbb{Z}$.

The next theorem establishes about when the submodule $\mathcal{N}_1 \oplus \mathcal{N}_2$ is a weakly quasi $(n+1)$-absorbing submodule.

Theorem 2.23. Let M_1, M_2 be R-modules and \mathcal{N}_1 (resp., \mathcal{N}_2) be a submodule of M_1 (resp., M_2). Consider the following assertions:

(1) \mathcal{N}_1 is a weakly quasi n-absorbing submodule of M_1, \mathcal{N}_2 is a quasi n-absorbing submodule of M_2 and $a^n y = 0$ whenever $a^n y \in \mathcal{N}_2$, for some $a \in R$ and $y \in M_2$.

(2) \mathcal{N}_2 is a weakly quasi n-absorbing submodule of M_2, \mathcal{N}_1 is a quasi n-absorbing submodule of M_1 and $a^n x = 0$ whenever $a^n x \in \mathcal{N}_1$, for some $a \in R$ and $x \in M_1$.

If (1) or (2) holds, then $\mathcal{N}_1 \oplus \mathcal{N}_2$ is a weakly quasi $(n+1)$-absorbing submodule of M.

Proof. Suppose that (1) holds. Let $0 \neq a^{n+1}(x, y) \in \mathcal{N}_1 \oplus \mathcal{N}_2$ for some $a \in R$ and $(x, y) \in M$. From assumption $a^n(ay) = 0$ and $0 \neq a^n(ax) \in \mathcal{N}_1$ and \mathcal{N}_2 is a quasi n-absorbing submodule of M_2. Since \mathcal{N}_1 is a weakly quasi n-absorbing submodule of M_1, it follows that $a^n x \in \mathcal{N}_1$. On the other hand $a^n(ay) = 0 \in \mathcal{N}_2$ and the fact that \mathcal{N}_2 is a quasi n-absorbing submodule of M_2 gives $a^n y \in \mathcal{N}_2$. Finally, $a^n(x, y) \in \mathcal{N}_1 \oplus \mathcal{N}_2$. Hence, $\mathcal{N}_1 \oplus \mathcal{N}_2$ is a weakly quasi $n+1$-absorbing submodule of M. The same argument if assertion (2) holds.

The next proposition examines the weakly quasi n-absorbing submodules under localization.

Proposition 2.24. Let N be a proper submodule of an R-module M and S be a multiplicative closed subset consisting entirely of nonzero divisor elements of R such that $(N :_R M) \cap S = \emptyset$. If N is a weakly quasi n-absorbing submodule of M, then $S^{-1}N$ is a weakly quasi n-absorbing submodule of $S^{-1}M$.
Proof. Let \(\frac{m}{a} \neq (\frac{m}{a})^n (\frac{m}{a}) \in S^{-1}N \). Then \(0 \neq (u \alpha)^m \in N \) for some element \(u \) of \(S \). So, \(0 \neq (u \alpha)^m \in N \) which is a weakly quasi \(n \)-absorbing submodule of \(M \). Therefore, \((u \alpha)^m \in N \) or \((u \alpha)^m \in (N:R \ M) \). Consequently, \((\frac{m}{a})^n (\frac{m}{a}) = (\frac{m}{a})^n (\frac{m}{a}) \in S^{-1}N \) or \((\frac{m}{a})^n = (\frac{m}{a})^n \in S^{-1}(N:R \ M) \subseteq (S^{-1}N:R S^{-1}M) \). Hence, \(S^{-1}N \) is a weakly quasi \(n \)-absorbing submodule of \(S^{-1}M \), as desired. \(\square \)

The following proposition studies the weakly quasi \(n \)-absorbing property under homomorphism.

Proposition 2.25. Let \(f : M \to M' \) be a homomorphism of \(R \)-modules.

1. Assume that \(f \) is a monomorphism. If \(N' \) is a weakly quasi \(n \)-absorbing submodule of \(M' \), then \(f^{-1}(N') \) is a weakly quasi \(n \)-absorbing submodule of \(M \).

2. Assume that \(f \) is an epimorphism and \(\ker(f) \subseteq N \). If \(N \) is a weakly quasi \(n \)-absorbing submodule of \(M \), then \(f(N) \) is a weakly quasi \(n \)-absorbing submodule of \(M' \).

Proof. (1) Assume that \(f \) is a monomorphism of \(R \)-modules and \(N' \) is a weakly quasi \(n \)-absorbing submodule of \(M' \). Let \(0 \neq a^n f(x) \in f^{-1}(N') \) for some \(a \in R \) and \(x \in M \). Then \(0 \neq a^n f(x) \in N' \) which is a weakly quasi \(n \)-absorbing submodule of \(M' \). So, \(a^n \in (N':R \ M') \) or \(a^n f(x) \in N' \). Therefore, \(a^n M' \subseteq N' \) or \(f(a^n f(x)) \subseteq N' \). Hence, it follows that \(a^n M \subseteq f^{-1}(N') \) or \(a^n f(x) \subseteq f^{-1}(N') \). Thus, \(a^n \in (f^{-1}(N') : R \ M) \) or \(a^n x \subseteq f^{-1}(N') \), making \(f^{-1}(N') \), a weakly quasi \(n \)-absorbing submodule of \(M \).

(2) Assume that \(f \) is an epimorphism, \(\ker(f) \subseteq N \) and \(N \) is a weakly quasi \(n \)-absorbing submodule of \(M \). Let \(a \in R \), \(x' \in M' \) such that \(0 \neq a^n x' \in f(N) \). Then there exists \(x \in M \) such \(x' = f(x) \). Since \(0 \neq a^n x' = a^n f(x) = f(a^n x) \in f(N) \) and \(\ker(f) \subseteq N \), then \(0 \neq a^n x \in N \) which is a weakly quasi \(n \)-absorbing submodule of \(M \). Therefore, \(a^n \in (N : R \ M) \) or \(a^n x \in N \). And so \(a^n M \subseteq N \) or \(a^n x \in N \). It follows that \(a^n M' \subseteq f(N) \) or \(a^n f(x) \subseteq f(N) \). Hence, \(a^n \in (f(N) : R \ M') \) or \(a^n x' \in f(N) \). Finally, \(f(N) \) is a weakly quasi \(n \)-absorbing submodule of \(M' \), as desired. \(\square \)

We close this paper by studying about when the intersection family of \((N_\alpha)_{\alpha \in I} \) is a weakly quasi \(n \)-absorbing submodule.

Theorem 2.26. Consider \((N_\alpha)_{\alpha \in I} \) a chain of weakly quasi \(n \)-absorbing submodules of an \(R \)-module \(M \). Then \(N = \bigcap_{\alpha \in I} N_\alpha \) is a weakly quasi \(n \)-absorbing submodule of \(M \).

Proof. Let \(0 \neq a^n x \in N \) for some \(a \in R \) and \(x \in M \). Clearly \(0 \neq a^n x \in N_\alpha \) for each \(\alpha \in I \). Two cases are then possible:

Case 1: If \(a^n \in (N_\alpha : R \ M) \) for all \(\alpha \in I \), then \(a^n \in \bigcap (N_\alpha : R \ M) = (\bigcap N_\alpha : R \ M) = (N : R \ M) \).
Case 2: Assume that $a^n \notin (N_{\alpha'} :_{R} M)$ for some $\alpha' \in I$. Then $a^n \notin (N_{\alpha} :_{R} M)$ for all $N_{\alpha} \subseteq N_{\alpha'}$. Using the fact that N_{α} is a weakly quasi n-absorbing submodule of M for each $\alpha \in I$, then $a^{n-1}x \in N_{\alpha}$ for all $N_{\alpha} \subseteq N_{\alpha'}$.

Consequently, it follows that $a^{n-1}x \in N = \bigcap_{\alpha \in I} N_{\alpha}$.

Finally, $N = \bigcap_{\alpha \in I} N_{\alpha}$ is a weakly quasi n-absorbing submodule of M, as desired.

References

Mohammed Issoual
Laboratory of Modeling and Mathematical Structures
Department of Mathematics
Faculty of Science and Technology of Fez, Box 2202
University S.M. Ben Abdellah Fez
Morocco
Email address: issoual2@yahoo.fr
Najib Mahdou
Laboratory of Modeling and Mathematical Structures
Department of Mathematics
Faculty of Science and Technology of Fez, Box 2202
University S.M. Ben Abdellah Fez
Morocco
Email address: mahdou@hotmail.com

Moutu Abdou Salam Moutui
Division of Science, Technology, and Mathematics
American University of Afghanistan
Kabul, Afghanistan
Email address: mmoutui@auaf.edu.af