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ON DOMINATION IN ZERO-DIVISOR GRAPHS OF RINGS

WITH INVOLUTION

Mohd Nazim, Junaid Nisar, and Nadeem ur Rehman

Abstract. In this paper, we study domination in the zero-divisor graph

of a ∗-ring. We first determine the domination number, the total domina-
tion number, and the connected domination number for the zero-divisor

graph of the product of two ∗-rings with componentwise involution. Then,
we study domination in the zero-divisor graph of a Rickart ∗-ring and re-

late it with the clique of the zero-divisor graph of a Rickart ∗-ring.

1. Introduction

In 1988, I. Beck [6] began to investigate the coloring of a commutative ring
R by assigning a graph with vertex set as the set of all elements of R and
two vertices a and b are adjacent if and only if ab = 0. While Beck focused
on the relationship between the click number and the chromatic number of
the graph, various works inspired by this structure focused on the interaction
of commutative rings and their zero-divisors graphs. However, in 1999, D.
F. Anderson and P. S. Livingston [4] modified and studied the zero-divisor
graph of a commutative ring R whose vertex set is the set of all nonzero zero-
divisor of R. Further, the zero-divisor graph of a commutative ring has been
studied extensively by several authors, e.g., [1,3–5,12]. The zero-divisor graph
of a noncommutative ring has been introduced and studied by Akbari [2] and
Redmond [13], whereas the same concept for semigroup by Demeyer et al. [8].
Moreover, the concept of dominating set of zero-divisor graph has implicitly
been studied in [9, 10] and [14].

A set S ⊆ V is a dominating set of a graph G = (V,E) if every vertex in
V \ S is adjacent to at least one vertex in S. A dominating set S is said to
be connected or clique dominating set if 〈S〉 is connected or 〈S〉 is complete,
respectively. A dominating set S is called a total dominating set if every vertex
in V is adjacent to some other vertex in S. The domination number of G,
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denoted λ(G), is the minimum cardinality of a dominating set in G. A domi-
nating set S of minimum cardinality in G is called λ-set of G. In a similar way,
one can define the connected domination number λc(G), the total domination
number λt(G), and the clique domination number λcl(G).

This paper is based on the properties of zero-divisor graphs of rings with
involution. A mapping ‘∗’ on an associative ring S is called involution if (x+
y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ S. A ring with
involution ‘∗’ is called a ∗-ring. Clearly, identity mapping is an involution if and
only if the ring is commutative. An element e of a ∗-ring is a projection if e = e2

and e = e∗. For a nonempty subset B of S, we write r(B) = {a ∈ S : ba = 0
for all b ∈ B} call a right annihilator of B in S. A Rickart ∗-ring is a ∗-ring
in which the right annihilator of every element is generated by a projection, as
a right ideal in S. Every Rickart ∗-ring contains unity. For each element a in
a Rickart ∗-ring, there is a unique projection e such that ae = a and ax = 0
if and only if ex = 0, called a right projection of a denoted by RP (a). In
fact, r({a}) = (1 − RP (a))A. Similarly, the left annihilator l({a}) and the
left projection LP (a) are defined for each element a in a Rickart ∗-ring S.
The set of projections P (S) in a Rickart ∗-ring S forms a lattice, denoted by
L(P (S)), under the partial order ‘e ≤ f if and only if e = fe = ef ’. In fact,
e∨ f = f +RP (e(1− f)) and e∧ f = e−LP (e(1− f)). We use to denote the
set of all nontrivial projection of S by P ∗(S) = P (S) \ {0, 1}. More details
about Rickart ∗-rings can be found in Berberian [7].

In [11], A. Patil and B. N. Waphare give the concept of zero-divisor graph of
∗-ring S. Let S be a ∗-ring. The zero-divisor graph of S, denoted by Γ∗(S), is
an undirected graph with vertex set as the set of all nonzero left zero-divisors
of S and two vertices a and b are adjacent if and only if ab∗ = 0.

In this paper, we study about the domination in zero-divisor graph of ∗-ring
and Rickart ∗-ring.

2. Preliminaries

In this section, we discusses about several graphs whose dominating sets and
domination number are clear. Some of them are following, where there proofs
are straightforward.

Example 2.1 ([15]). (1) For a complete graph Kn, λ(Kn) = 1.
(2) Let G be a complete m-partite graph (m ≥ 2) with partition sets

U1, U2, . . . , Um. If |Ui| ≥ 2 for 1 ≤ i ≤ m, then λ(G) = 2, because one
vertex of U1 and one vertex of U2 dominate G. If |Ui| = 1 for some i,
then λ(G) = 1.

(3) For a star graph K1,n, λ(K1,n) = 1.
(4) If G is a bistar graph, then domination number of G is 2 because the

set containing of two centers of G is a dominating set.
(5) If Cn is a cycle and Pn is a path with n vertices, then λ(Cn) = dn3 e =

λ(Pn).
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3. The domination number of zero-divisor graph of rings with
involution

In this section, we study domination in the zero-divisor graph of a ∗-ring. We
first determine the domination number, the total domination number, and the
connected domination number for the zero-divisor graph of the product of two
∗-rings with componentwise involution. We then generalized these results to the
zero-divisor graph of finite product of ∗-rings with componentwise involution.

We start this section with definition of zero-divisor graph of ring with invo-
lution.

Definition 3.1. Let S be a ∗-ring. The zero-divisor graph of S, denoted by
Γ∗(S), is an undirected graph with vertex set {a(6= 0) ∈ S : ab = 0, where b is
a nonzero element of S} and two distinct vertices a and b are adjacent if and
only if ab∗ = 0.

Now, we consider some examples of zero-divisor graph of ∗-rings and their
domination number.

Example 3.1. If S = F1 × F2, where F1 and F2 are fields with |F1| ≥ 3
and |F2| ≥ 3. Then {(1, 0), (0, 1)} is a dominating set of Γ∗(S) and hence
λ(Γ∗(S)) = 2.

Example 3.2. If S = R ×R, where R is a domain, with involution (x, y)∗ =
(y, x). Then {(1, 0), (0, 1)} is a dominating set of Γ∗(S) and hence λ(Γ∗(S)) =
2.

Example 3.3. If S be a Rickart ∗-ring which contains exactly 4 projections,
then Γ∗(S) is complete bipartite. Hence, λ(Γ∗(S)) = 2.

Example 3.4. If S = Z6 with identity mapping as an involution. Then
V (Γ∗(S)) = {2, 3, 4} and the graph Γ∗(S) is shown in Fig. 1. The set {3} is a
dominating set of Γ∗(S) and hence λ(Γ∗(S)) = 1.

Fig. 1.

3 4

2

Now, we discuss about the domination number of zero-divisor graph of prod-
uct of two ∗-rings with componentwise involution. We begin with the following
lemma.

Lemma 3.1. Let S1, S2 be two ∗-rings and S = S1×S2 with componentwise
involution. Then (a, b) is a left zero-divisor if and only if at least one of a and
b is a left zero-divisor.
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Proposition 3.1. Let R be a ∗-ring and S = Z2 × R with componentwise
involution. If R is a domain, then λ(Γ∗(S)) = 1.

Proof. Notice that Γ∗(S) is a star graph and any star graph has domination
number one. �

As a consequence, if R is a domain, then λc(Γ
∗(S)) = 1 and λt(Γ

∗(S)) = 2.

Definition 3.2. Let S be a ∗-ring with unity and V (Γ∗(S)) 6= ∅. A subset S ⊆
V (Γ∗(S)) is called a semi-total dominating set in Γ∗(S) if S is a dominating
set for Γ∗(S) and for any a ∈ S there is a vertex b ∈ S (not necessarily distinct)
such that ab∗ = 0.

The semi-total domination number λst(Γ
∗(S)) of Γ∗(S) is the minimum

cardinality of a semi-total dominating set in Γ∗(S).

We refer to a semi-total dominating set of Γ∗(S) of minimum cardinality as
a λst(Γ

∗(S))-set.

Proposition 3.2. Let R be a ∗-ring and S = Z2 × R with componentwise
involution. If R is not a domain, then λ(Γ∗(S)) = λst(Γ

∗(R)) + 1.

Proof. Let D be a λst(Γ
∗(R))-set. Then the set {(0, x) : x ∈ D} ∪ {(1, 0)}

is a dominating set for Γ∗(S). So λ(Γ∗(S)) ≤ λst(Γ
∗(R)) + 1. Now, let T

be a λ(Γ∗(S))-set. Consider T1 = {x : (0, x) ∈ T}. We claim that T1 is a
dominating set for Γ∗(R). Let d ∈ V (Γ∗(R)). Then (1, d) ∈ V (Γ∗(S)). So,
there exists (a, b) ∈ T such that (a, b)(1, d)∗ = (0, 0). This implies that a = 0
and b ∈ T1 such that db∗ = 0. Thus, T1 is a dominating set for Γ∗(R). On the
other hand, for any x ∈ D1, (1, x) ∈ V (Γ∗(S)), and so there exists (a, b) ∈ T
such that (a, b)(1, x)∗ = (0, 0). Then a = bx∗ = 0. So b ∈ T1 and bx∗ = 0.
Thus, T1 is a λst(Γ

∗(R))-set.
We next show that |T | > |T1|. Suppose to the contrary that |T | = |T1|. Then

(0, 1) is not dominated by T , a contradiction. Thus |T | > |T1|. We conclude
that λ(Γ∗(S)) = |T | ≥ |T1|+ 1 ≥ λst(Γ∗(R)) + 1. �

We next assign a parameter a∗(S) to a ∗-ring S. For a ∗-ring S with unity,
we let

a∗(S) =

{
1, if V (Γ∗(S)) = ∅;
λst(Γ

∗(S)), if V (Γ∗(S)) 6= ∅.

Theorem 3.3. Let n ≥ 3 be a fixed integer and S = S1 × S2 × · · · × Sn,
where Si is a ∗-ring with unity for each i = 1, 2, . . . , n and S is a ∗-ring with
componentwise involution. Then,

λ(Γ∗(S)) = a∗(S1) + a∗(S2) + · · ·+ a∗(Sn).

Proof. We consider the following cases.
Case 1: V (Γ∗(Si))=∅ for each 1 ≤ i ≤ n. Clearly, the set S={a1, a2, . . . , an},
where a1 = (x1, 0, 0, . . . , 0), a2 = (0, x2, 0, . . . , 0), . . . , a3 = (0, 0, . . . , xn) and xi
is a fixed nonzero element of Si for each 1 ≤ i ≤ n, is a dominating set for
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Γ∗(S). A nonzero element (a1, a2, . . . , an) is a vertex in Γ∗(S) if and only if
at least one of its components is zero. We need to show that for any T ⊂ S,
T is not a dominating set of Γ∗(S). Suppose to the contrary that there exists
T ⊂ S such that T is a dominating set of Γ∗(S). Let T = {v1, v2, . . . , vn−1},
where the ith component of vi is nonzero. Consider u = (1, 1, . . . , 1, 0). Then
u is a vertex of Γ∗(S) such that no element of T is adjacent to it. Thus,

λ(Γ∗(S)) = n.

Case 2: V (Γ∗(Si)) 6= ∅ for some i = 1, 2, . . . , n. Without loss of general-
ity, we assume that V (Γ∗(Sj)) 6= ∅ for 1 ≤ j ≤ m and V (Γ∗(Sk)) = ∅ for
m + 1 ≤ k ≤ n. First, let Sj be a λst(Γ

∗(Sj))-set, for 1 ≤ j ≤ m. De-
fine Dj = {(0, 0, . . . , aj , 0, . . . , 0) : aj ∈ Sj} for each 1 ≤ j ≤ m, D′k =
{(0, 0, . . . , 1, 0, . . . , 0)}, with kth component 1 for each m + 1 ≤ k ≤ n, and
D = (

⋃m
j=1Dj) ∪ (

⋃n
k=m+1D

′
k). We have to show that D is a dominating

set for Γ∗(S). Observe that, a nonzero element (x1, x2, . . . , xn) is a vertex of
Γ∗(S) if and only if at least one of xj ∈ V (Γ∗(Sj)), 1 ≤ j ≤ m, or at least one
of xk is zero for 1 ≤ k ≤ n.

Let (x1, x2, . . . , xn) be a vertex of Γ∗(S) such that xj ∈ V (Γ∗(Sj)) for
some 1 ≤ j ≤ m. Since Sj is a dominating set of Γ∗(Sj), there exists yj ∈
Sj such that xjy

∗
j = 0. Observe that, (0, 0, . . . , yj , 0, . . . , 0) ∈ Dj such that

(x1, x2, . . . , xn)(0, 0, . . . , yj , 0, . . . , 0)∗ = (0, 0, . . . , 0). Similarly, we can show
that other vertices of Γ∗(S) are dominated by some element of D. Thus, D is
a dominating set for Γ∗(S). Hence,

λ(Γ∗(S)) ≤ a∗(S1) + a∗(S2) + · · ·+ a∗(Sm) + (n−m).

Now, let T be a λ(Γ∗(S))-set, and define Tj = {xj : (0, 0, . . . , 0, xj , 0, . . . , 0)
∈ D} for 1 ≤ j ≤ m. We show that Tj is a semi-total dominating set for Γ∗(Sj)
for 1 ≤ j ≤ m. For any aj ∈ V (Γ∗(Sj), (1, 1, . . . , 1, aj , 1, . . . , 1) ∈ V (Γ∗(S)).
So, there is (x1, x2, . . . , xn) ∈ T such that

(1, 1, . . . , 1, aj , 1, . . . , 1)(x1, x2, . . . , xn)∗ = (0, 0, . . . , 0).

This implies that x1 = x2 = · · · = xj−1 = ajx
∗
j = xj+1 = · · · = xn = 0. So

xj ∈ Tj , and aj is dominated by an element of Tj . We deduce that Tj is a
dominating set for Γ∗(Sj), for each 1 ≤ j ≤ m. On the other hand, for any
bj ∈ Tj , (1, 1, . . . , 1, bj , 1, . . . , 1) ∈ V (Γ∗(S)), and so is dominated by an element
(z1, z2, . . . , zn) of T . We obtain that (z1, z2, . . . , zn)(1, 1, . . . , 1, bj , 1, . . . , 1)∗ =
(0, 0, . . . , 0). This gives that z1 = z2 = · · · = zj−1 = bjz

∗
j = zj+1 = · · · = zn =

0. So zj ∈ Tj such that bjz
∗
j = 0. Hence, Tj is a semi-total dominating set for

Γ∗(Sj) for each 1 ≤ j ≤ m. This shows that

|T | ≥ |T1|+ |T2|+ · · ·+ |Tm| ≥ a∗(S1) + a∗(S2) + · · ·+ a∗(Sm).

If,

|T | = a∗(S1) + a∗(S2) + · · ·+ a∗(Sm),
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then the vertices vi = (1, 1, . . . , 1, 0, 1, . . . , 1) with ith components zero for each
m+ 1 ≤ i ≤ n, are not dominated by any vertex of T , which is a contradiction.
So,

|T | ≥ a∗(S1) + a∗(S2) + · · ·+ a∗(Sm) + (n−m).

Case 3: V (Γ∗(Si)) 6= ∅ for each 1 ≤ i ≤ n. Let S be a λ(Γ∗(S))-set. Define
Si = {xi : (0, 0, . . . , 0, xi, 0, . . . , 0) ∈ D} for each 1 ≤ i ≤ n. Similar to Case 2,
we obtain that Si is a semi-total dominating set for Γ∗(Si), for each 1 ≤ i ≤ n.
So

|D| ≥ a∗(S1) + a∗(S2) + · · ·+ a∗(Sn).

On the other hand, let Di be a λ(Γ∗(Si))-set, for each 1 ≤ i ≤ n. Define
Ti = {(0, 0, . . . , 0, xi, 0, . . . , 0) : xi ∈ Di} for each 1 ≤ i ≤ n. Since any vertex
of Γ∗(S) is of the form (x1, x2, . . . , xn), where at least on of xi ∈ V (Γ∗(Si)),
for each 1 ≤ i ≤ n, we obtain that T =

⋃n
i=1 Ti is a dominating set for Γ∗(S).

Hence,
λ(Γ∗(S)) = a∗(S1) + a∗(S2) + · · ·+ a∗(Sn). �

In the consequences of Theorem 3.3, we obtain the following interested corol-
lary.

Corollary 3.1. Let n ≥ 3 be a fixed integer and S = S1 × S2 × · · · × Sn,
where Si is a ∗-ring with unity for each i = 1, 2, . . . , n and S is a ∗-ring with
componentwise involution. Then,

λ(Γ∗(S)) = λst(Γ
∗(S)).

The minimum dominating sets for Γ∗(S) in proof of Theorem 3.3 are con-
nected. This leads to the following.

Corollary 3.2. Let n ≥ 3 be a fixed integer and S = S1 × S2 × · · · × Sn,
where Si is a ∗-ring with unity for each i = 1, 2, . . . , n and S is a ∗-ring with
componentwise involution. Then,

λ(Γ∗(S)) = λt(Γ
∗(S)) = λc(Γ

∗(S)).

Theorem 3.4. Let S1, S2 be ∗-rings with unity and S = S1 × S2 with
componentwise involution. If min{|S1|, |S2|} ≥ 3, then

λ(Γ∗(S)) = a∗(S1) + a∗(S2).

Proof. The proof of this theorem is same as Theorem 3.3. �

In Theorem 3.4, if |S1| = 2 or |S2| = 2, then λ(Z2 × R) = 2, where R is a
domain, which contradict Proposition 3.1.

Corollary 3.3. Let S be a ∗-ring with unity. If S contains a nontrivial central
projection, then

λ(Γ∗(S)) = λst(Γ
∗(S)) = λt(Γ

∗(S)) = λc(Γ
∗(S)).

Proof. Suppose S contains a nontrivial central projection, say h. Then S =
S1×S2, where S1 = hS, S2 = (1−h)S are ∗-rings with unity. Since |S1| ≥ 3
and |S2| ≥ 3, the result follows from Theorem 3.4. �
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4. The domination number of zero-divisor graph of Rickart ∗-rings

In this section, we study domination in the zero-divisor graph of a Rickart
∗-ring. We begin our discussion with following known results given by A. Patil
and B. N. Waphare [11].

Theorem 4.1 ([11, Lemma 3.1]). Let S be a Rickart ∗-ring. Then a ∈
V (Γ∗(S)) if and only if RP (a) is nontrivial.

Theorem 4.2 ([11, Proposition 3.2]). Let S be a Rickart ∗-ring. Then the ver-
tices a and b are adjacent in Γ∗(S) if and only if RP (a)RP (b) = 0. Moreover,
a vertex x is adjacent to a if and only if x is adjacent to RP (a).

Example 4.1. Let S = Z2 ×Z2 ×Z2 with identity mapping as an involution.
Observe that S is a Rickart ∗-ring, with V (Γ∗(S)) = {a1, a2, a3, a4, a5, a6},
where a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 1), a4 = (1, 1, 0), a5 = (1, 0, 1),
a6 = (0, 1, 1) and set of projections P (S) = {0, 1, a1, a2, a3, a4, a5, a6}. The
graph Γ∗(S) and the lattice of projection L(P (S)) is shown in Fig. 2. The set
T = {a1, a2, a3} is a dominating set of Γ∗(S) and hence λ(Γ∗(S)) = 3.

Fig. 2.

a5a2a3a4

a1

a6

0

a1 a2 a3

a4 a5 a6

1

To characterize the domination in zero-divisor graph of Rickart ∗-ring, we
needed the following results.

Proposition 4.1. For any Rickart ∗-ring S, the set of all nontrivial projection
P ∗(S) is a dominating set of Γ∗(S).

Proof. Let a be any vertex of Γ∗(S). Then, there exists a nontrivial projection
e such that RP (a) = e. Since e is adjacent to 1− e, therefore by Theorem 4.2,
a is also adjacent with 1 − e. This proved that P ∗(S) is a dominating set of
Γ∗(S). �

“An element e in a lattice is an atom if 0 ≤ f ≤ e implies either f = 0 or
f = e”.

Theorem 4.3 ([11, Lemma 3.4]). Let S be a Rickart ∗-ring such that Γ∗(S)
does not contain an infinite clique. Then the lattice L(P (S)) of projections of
S satisfies DCC (Descending Chain Condition).
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Theorem 4.4 ([11, Corollary 3.4]). Let S be a Rickart ∗-ring such that Γ∗(S)
does not contain an infinite clique. Then every nonzero projection in S contains
an atom in P (S).

Theorem 4.5. Let S be a Rickart ∗-ring such that Γ∗(S) does not contain an
infinite clique. Then λ(Γ∗(S)) ≤ n, where n is the cardinality of maximal set
of atoms in P (S).

Proof. If Γ∗(S) does not contain an infinite clique, then by Theorem 4.3 and
Theorem 4.4, P (S) contains finite number of atoms. Let A = {f1, f2, . . . , fn}
be the maximal set of atoms. We show that A is a dominating set for Γ∗(S).
Let a be any vertex of Γ∗(S). Then there exists a nontrivial projection f such
that RP (a) = f . We claim that f is adjacent with fi for some i = 1, 2, . . . , n.
If 1 − f = fi for some i, then we are done. If 1 − f 6= fi for all i, then by
Theorem 4.4, there exists an element fm ∈ A such that fm < (1 − f). This
gives ffm = fmf = 0. Thus, ffi = 0 for some i = 1, 2, . . . , n. This shows that
a is adjacent with fi for some i = 1, 2, . . . , n. Hence, A is a dominating set of
Γ∗(S). This implies that λ(Γ∗(S)) ≤ n. �

With the help of the above theorem we can directly find the domination
number of Γ∗(S), if we know all of its atoms in P (S). Consider the following
example.

Example 4.2. Let S = M2(Z3) with transposition as an involution. By
Berberian [7], S is a Rickart ∗-ring and the set of projections in S is {0, 1, e, 1−
e, f, 1−f}, where e = [ 1 0

0 0 ], f = [ 2 2
2 2 ]. The lattice of projection P (S) is shown

in Fig. 3. The set of atoms of P (S) is {e, 1 − e, f, 1 − f}, which dominate
Γ∗(S).

Fig. 3.

0

e 1 - e f 1 - f

1

Lemma 4.1 ([7, Theorem 6]). A ∗-ring S with finitely many elements is a
Rickart ∗-ring if and only if S = S1×S2×· · ·×Sr, where Si is a field or Si

is a 2× 2-matrix over a finite field F(pα) with α an odd positive integer and p
is a prime of the form 4k + 3.
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Theorem 4.6 ([11, Theorem 3.7]). Let S be a Rickart ∗-ring such that Γ∗(S)
does not contain an infinite clique. Then χ(Γ∗(S)) = ω(Γ∗(S)) = n, where n
is the cardinality of maximal set of pairwise orthogonal atoms in P (S).

Theorem 4.7. Let S is a Rickart ∗-ring and n ≥ 2 be a fixed positive integer.
If S = S1 ×S2 × · · · ×Sn, where Si is a field for each i = 1, 2, . . . , n. Then:

(a) λ(Γ∗(S)) = n = ω(Γ∗(S)) if n ≥ 3;
(b) λ(Γ∗(S)) = 2 = ω(Γ∗(S)) if n = 2 and min{|S1|, |S2|} ≥ 3; and
(c) λ(Γ∗(S)) = 1 < ω(Γ∗(S)) if n = 2 and min{|S1|, |S2|} = 2.

Proof. Clearly, the set S = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)} is a
dominating set of Γ∗(S). Also, S is the maximal set of pairwise orthogonal
atoms in P (S). Thus, by Theorem 4.6, λ(Γ∗(S)) = n = ω(Γ∗(S)) if n ≥ 3.

(b) and (c) follows from the fact that for n = 2, Γ∗(S) is a complete bipartite
graph. �

Corollary 4.1. For any given positive integer k, there exists a Rickart ∗-ring
S whose zero-divisor graph contains a maximal clique dominating set of size
k, and obviously its domination number is equal to k. Moreover, for k ≥ 2,
λ(Γ∗(S)) = ω(Γ∗(S)) = k.
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