DOI QR코드

DOI QR Code

Strength-dexterity Complementariness: Comparison between Left and Right Hands in Older Female Adults

근력-기민성 보완: 여성 노인의 오른손과 왼손 비교

  • Park, Yang Sun (Devision of Geriatrics, Department of Internal Medicine, Yonsei University of College of Medicine) ;
  • Park, Da Won (Department of Kinesiology, Seoul National University) ;
  • Koh, Kyung (Department of Physical Therapy and Rehabilitation Science, University of Maryland) ;
  • Kwon, Hyun Joon (Department of Kinesiology, University of Maryland) ;
  • Shim, Jae Kun (Department of Kinesiology, University of Maryland)
  • Received : 2021.03.01
  • Accepted : 2021.12.16
  • Published : 2021.12.31

Abstract

Objective: The purpose of this study was to in this study. The maximum grip force of the elderly hand was measured using a custom-designed grasping apparatus mounted with five three-component force transducers. The Jebsen-Tayler hand function test and Purdue Pegboard test were performed to evaluate the dexterity of the hand. Method: Twenty-six elderly women participated in the left hand between the maximum grip force and the Jebsen-Taylor hand function test results (r=-.513, p=.007). A significant correlation was also shown in the hand maximum grip force and the hand Purdue Pegboard results (r=.514, p=.007). However, no significant correlation was found in the right hand. Results: We found a significant correlation investigate the relationship between hand grip strength and hand dexterity in the elderly. Conclusion: Our findings in the current study support the theory of 'Strength-dexterity complementariness' which states that improvement in dexterity is associated with the grip force strength.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF-2012R1A6A3A04040457).

References

  1. Albert, M. S. & Moss, M. B. (1988). Geriatric neuropsychology: The Guilford Press.
  2. Allgower, K. & Hermsdorfer, J. (2017). Fine motor skills predict performance in the Jebsen Taylor Hand Function Test after stroke. Clinical Neurophysiology, 128(10), 1858-1871. https://doi.org/10.1016/j.clinph.2017.07.408
  3. Brown, J. W. & Jaffe, J. (1975). Hypothesis on cerebral dominance. Neuropsychologia, 13(1), 107-110. https://doi.org/10.1016/0028-3932(75)90054-8
  4. Buddenberg, L. A. & Davis, C. (2000). Test-retest reliability of the Purdue Pegboard Test. American Journal of Occupational Therapy, 54(5), 555-558. https://doi.org/10.5014/ajot.54.5.555
  5. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85. https://doi.org/10.1037/0882-7974.17.1.85
  6. Carmeli, E., Patish, H. & Coleman, R. (2003). The aging hand. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58(2), M146-M152. https://doi.org/10.1093/gerona/58.2.M146
  7. Cole, K. J. & Rotella, D. L. (2002). Old age impairs the use of arbitrary visual cues for predictive control of fingertip forces during grasp. Experimental Brain Research, 143(1), 35-41. https://doi.org/10.1007/s00221-001-0965-9
  8. Cuadra, C., Bartsch, A., Tiemann, P., Reschechtko, S. & Latash, M. L. (2018). Multi-finger synergies and the muscular apparatus of the hand. Experimental Brain Research, 236(5), 1383-1393. https://doi.org/10.1007/s00221-018-5231-5
  9. Diedrichsen, J. & Kornysheva, K. (2015). Motor skill learning between selection and execution. Trends in Cognitive Sciences, 19(4), 227-233. https://doi.org/10.1016/j.tics.2015.02.003
  10. Dolcos, F., Rice, H. J. & Cabeza, R. (2002). Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neuroscience & Biobehavioral Reviews, 26(7), 819-825. https://doi.org/10.1016/S0149-7634(02)00068-4
  11. Geschwind, D. H. & Iacoboni, M. (1999). Structural and functional asymmetries of the human frontal lobes. The Human Frontal Lobes: Functions and Disorders, 45-70.
  12. Goldstein, G. & Shelly, C. (1981). Does the right hemisphere age more rapidly than the left? Journal of Clinical and Experimental Neuropsychology, 3(1), 65-78. https://doi.org/10.1080/01688638108403114
  13. Haward, B. M. & Griffin, M. J. (2002). Repeatability of grip strength and dexterity tests and the effects of age and gender. International Archives of Occupational and Environmental Health, 75(1-2), 111-119. https://doi.org/10.1007/s004200100285
  14. Hellige, J. B. (2001). Hemispheric asymmetry: What's right and what's left (Vol. 6): Harvard University Press.
  15. Hutchinson, S., Kobayashi, M., Horkan, C., Pascual-Leone, A., Alexander, M. & Schlaug, G. (2002). Age-related differences in movement representation. Neuroimage, 17(4), 1720-1728. https://doi.org/10.1006/nimg.2002.1309
  16. Jebsen, R. H. (1969). An objective and standardized test of hand function. Archives of Physical Medicine and Rehabilitation, 50(6), 311-319.
  17. Keogh, J. W., Morrison, S. & Barrett, R. (2007). Strength training improves the tri-digit finger-pinch force control of older adults. Archives of Physical Medicine and Rehabilitation, 88(8), 1055-1063. https://doi.org/10.1016/j.apmr.2007.05.014
  18. Klisz, D. (1978). Neuropsychological evaluation in older persons The Clinical Psychology of Aging (pp. 71-95): Springer.
  19. Kubota, H., Demura, S. & Kawabata, H. (2012). Laterality and age-level differences between young women and elderly women in controlled force exertion (CFE). Archives of Gerontology and Geriatrics, 54(2), e68-e72. https://doi.org/10.1016/j.archger.2011.06.027
  20. Martin, J. A., Ramsay, J., Hughes, C., Peters, D. M. & Edwards, M. G. (2015). Age and grip strength predict hand dexterity in adults. PloS One, 10(2), e0117598. https://doi.org/10.1371/journal.pone.0117598
  21. Mathiowetz, V., Kashman, N., Volland, G., Weber, K., Dowe, M. & Rogers, S. (1985). Grip and pinch strength: normative data for adults. Archives of Physical Medicine and Rehabilitation, 66(2), 69-74.
  22. Moulton, E., Gallea, C., Kemlin, C., Valabregue, R., Maier, M. A., Lindberg, P. & Rosso, C. (2017). Cerebello-cortical differences in effective connectivity of the dominant and non-dominant hand during a visuomotor paradigm of grip force control. Frontiers in Human Neuroscience, 11, 511. https://doi.org/10.3389/fnhum.2017.00511
  23. Nebes, R. D. (1974). Hemispheric specialization in commissurotomized man. Psychological Bulletin, 81(1), 1. https://doi.org/10.1037/h0035626
  24. Olafsdottir, H. B., Zatsiorsky, V. M. & Latash, M. L. (2008). The effects of strength training on finger strength and hand dexterity in healthy elderly individuals. Journal of Applied Physiology, 105(4), 1166-1178. https://doi.org/10.1152/japplphysiol.00054.2008
  25. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/10.1016/0028-3932(71)90067-4
  26. Park, K. A. & Jung, M. Y. (2002). Comparing the Four Korean Sentences of Writing Subtest in Administration of Jebsen-Taylor Hand Function Test. Korean Society of Occupational Therapy, 10(1), 35-41.
  27. Patten, C., Kamen, G. & Rowland, D. M. (2001). Adaptations in maximal motor unit discharge rate to strength training in young and older adults. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 24(4), 542-550.
  28. Rahman, N., Thomas, J. J. & Rice, M. S. (2002). The relationship between hand strength and the forces used to access containers by well elderly persons. American Journal of Occupational Therapy, 56(1), 78-85. https://doi.org/10.5014/ajot.56.1.78
  29. Rice, M. S., Leonard, C. & Carter, M. (1998). Grip strengths and required forces in accessing everyday containers in a normal population. American Journal of Occupational Therapy, 52(8), 621-626. https://doi.org/10.5014/ajot.52.8.621
  30. Sale, M. V. & Semmler, J. G. (2005). Age-related differences in corticospinal control during functional isometric contractions in left and right hands. Journal of Applied Physiology, 99(4), 1483-1493. https://doi.org/10.1152/japplphysiol.00371.2005
  31. Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S. & Quinn Jr, J. T. (1979). Motor-output variability: a theory for the accuracy of rapid motor acts. Psychological Review, 86(5), 415. https://doi.org/10.1037/0033-295X.86.5.415
  32. Scholz, J. P., Danion, F., Latash, M. L. & SchoEner, G. (2002). Understanding finger coordination through analysis of the structure of force variability. Biological Cybernetics, 86(1), 29-39. https://doi.org/10.1007/s004220100279
  33. Sergent, J., Ohta, S. & Macdonald, B. (1992). Functional neuroanatomy of face and object processing: a positron emission tomography study. Brain, 115(1), 15-36. https://doi.org/10.1093/brain/115.1.15
  34. Shim, J. K., Hsu, J., Karol, S. & Hurley, B. F. (2008). Strength training increases training-specific multifinger coordination in humans. Motor Control, 12(4), 311-329. https://doi.org/10.1123/mcj.12.4.311
  35. Shinohara, M., Li, S., Kang, N., Zatsiorsky, V. M. & Latash, M. L. (2003). Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks. Journal of Applied Physiology, 94(1), 259-270. https://doi.org/10.1152/japplphysiol.00643.2002
  36. Skoura, X., Personnier, P., Vinter, A., Pozzo, T. & Papaxanthis, C. (2008). Decline in motor prediction in elderly subjects: right versus left arm differences in mentally simulated motor actions. Cortex, 44(9), 1271-1278. https://doi.org/10.1016/j.cortex.2007.07.008
  37. Teixeira, L. A. (2008). Categories of manual asymmetry and their variation with advancing age. Cortex, 44(6), 707-716. https://doi.org/10.1016/j.cortex.2006.10.002
  38. Tiffin, J. & Asher, E. J. (1948). The Purdue Pegboard: norms and studies of reliability and validity. Journal of Applied Psychology, 32(3), 234. https://doi.org/10.1037/h0061266
  39. Weller, M. P. & Latimer-Sayer, D. (1985). Increasing right hand dominance with age on a motor skill task. Psychological Medicine, 15(4), 867-872. https://doi.org/10.1017/s0033291700005109