Acknowledgement
This research was conducted with the support of the National Research Foundation of Korea (NRF-2019R1F1A1060772) funded by the government (Ministry of Science and ICT) in 2021.
References
- J. Sun, Q. Guan, Y. Liu, and J. Leng, "Morphing aircraft based on smart materials and structures: A state-of-the-art review," J. Intell. Mater. Syst. Struct., vol. 27, no. 17, pp. 2289-2312, 2016, doi: 10.1177/1045389X16629569.
- L. D. Peel, J. Mejia, B. Narvaez, K. Thompson, and M. Lingala, "Development of a simple morphing wing using elastomeric composites as skins and actuators," J. Mech. Des. Trans. ASME, vol. 131, no. 9, pp. 0910031-0910038, 2009, doi: 10.1115/1.3159043.
- A. Fortini, A. Suman, M. Merlin, and G. L. Garagnani, "Morphing blades with embedded SMA strips: An experimental investigation," Mater. Des., vol. 85, pp. 785-795, 2015, doi: 10.1016/j.matdes.2015.07.175.
- C. S. Haines et al., "Artificial muscles from fishing line and sewing thread," Science, vol. 343, no. 6173, pp. 868-872, 2014, doi: 10.1126/science.1246906.
- A. Potekhina and C. Wang, "Review of electrothermal actuators and applications," Actuators, vol. 8, no. 4, 2019, doi: 10.3390/ACT8040069.
- H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. G. Lovell, "Thermo-magnetic metal flexure actuators," in Technical Digest IEEE Solid-State Sensor and Actuator Workshop, 1992, pp. 73-75, doi: 10.1109/SOLSEN.1992.228273.
- K. Alblalaihid, J. Overton, S. Lawes, and P. Kinnell, "A 3D-printed polymer micro-gripper with self-defined electrical tracks and thermal actuator," J. Micromechanics Microengineering, vol. 27, no. 4, 2017, doi: 10.1088/1361-6439/aa631e.
- A. Sanjay Joshi, H. Mohammed, and S. M. Kulkarni, "Analysis of a Chevron Beam Thermal Actuator," IOP Conf. Ser. Mater. Sci. Eng., vol. 310, no. 1, 2018, doi: 10.1088/1757-899X/310/1/012123.
- X. J. Mu et al., "A compact circumferential scanned endoscopic imaging probe using a MEMS-driven pyramidal polygon reflector," Proc. IEEE Int. Conf. Micro Electro Mech. Syst., vol. 20, no. 6, pp. 902-905, 2012, doi: 10.1109/MEMSYS.2012.6170331.
- X. Zhang, B. Li, X. Li, and H. Xie, "A robust, fast electrothermal micromirror with symmetric bimorph actuators made of copper/tungsten," 2015 Transducers - 2015 18th Int. Conf. Solid-State Sensors, Actuators Microsystems, pp. 912-915, 2015.
- S. Timoshenko, "Analysis of Bi-Metal Thermostats," J. Opt. Soc. Am., vol. 11, no. 3, pp. 233-255, 1925, doi: 10.1364/JOSA.11.000233.
- S. Kim, W. Kim, and Y. Kim, "Design and performance evaluation of thin-film actuators based on flexible Ni-Co substrates," Micro Nano Syst. Lett., vol. 8, no. 1, 2020, doi: 10.1186/s40486-020-00122-z.
- R. Cragun, L. L. Howell, and A. S. of M. Engineers, "Linear Thermomechanical Microactuators," in Symposium, Micro-electro-mechanical systems; (MEMS) -1999-, vol. 1, pp. 181-188, [Online]. Available: https://www.tib.eu/de/suchen/id/BLCP%3ACN033314656.
- L. Que, J. S. Park, and Y. B. Gianchandani, "Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices," J. Microelectromechanical Syst., vol. 10, no. 2, pp. 247-254, 2001, doi: 10.1109/84.925771.
- M. J. Sinclair, "A high force low area MEMS thermal actuator," in ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069), 2000, vol. 1, pp. 127-132, doi: 10.1109/ITHERM.2000.866818.
- L. Segal, "The thermal expansion of reinforced nylon-6 composites through the matrix glass transition temperature," Polym. Eng. Sci., vol. 19, no. 5, pp. 365-372, Apr. 1979, doi: https://doi.org/10.1002/pen.760190508.
- Y. Cengel and A. Ghajar, Heat and mass transfer: fundamentals and applications, 5th ed. McGraw-Hill Higher Education, 2014.