DOI QR코드

DOI QR Code

Seafloor terrain detection from acoustic images utilizing the fast two-dimensional CMLD-CFAR

  • Wang, Jiaqi (Acoustic Science and Technology Laboratory, Harbin Engineering University) ;
  • Li, Haisen (Acoustic Science and Technology Laboratory, Harbin Engineering University) ;
  • Du, Weidong (Acoustic Science and Technology Laboratory, Harbin Engineering University) ;
  • Xing, Tianyao (Acoustic Science and Technology Laboratory, Harbin Engineering University) ;
  • Zhou, Tian (Acoustic Science and Technology Laboratory, Harbin Engineering University)
  • 투고 : 2019.11.18
  • 심사 : 2020.11.18
  • 발행 : 2021.11.30

초록

In order to solve the problem of false terrains caused by environmental interferences and tunneling effect in the conventional multi-beam seafloor terrain detection, this paper proposed a seafloor topography detection method based on fast two-dimensional (2D) Censored Mean Level Detector-statistics Constant False Alarm Rate (CMLD-CFAR) method. The proposed method uses s cross-sliding window. The target occlusion phenomenon that occurs in multi-target environments can be eliminated by censoring some of the large cells of the reference cells, while the remaining reference cells are used to calculate the local threshold. The conventional 2D CMLD-CFAR methods need to estimate the background clutter power level for every pixel, thus increasing the computational burden significantly. In order to overcome this limitation, the proposed method uses a fast algorithm to select the Regions of Interest (ROI) based on a global threshold, while the rest pixels are distinguished as clutter directly. The proposed method is verified by experiments with real multi-beam data. The results show that the proposed method can effectively solve the problem of false terrain in a multi-beam terrain survey and achieve a high detection accuracy.

키워드

과제정보

The funders are National Key R&D Program of China (2017YFC0306000, 2016YFC1402303), National Natural Science Foundation of China (NSFC) (U1809212, U1709203, 41576102).

참고문헌

  1. Acosta, Gerardo G., Villar, Sebastian A., 2015. Accumulated CA-CFAR process in 2-D for online object detection from sidescan sonar data. IEEE J. Ocean. Eng. 4 (13), 558-569.
  2. Alexandrou, Dimitri, de Moustier, Christian, 1988. Adaptive noise canceling applied to sea beam sideloe interference eejection. IEEE J. Ocean. Eng. 13 (2), 70-76. https://doi.org/10.1109/48.556
  3. Boudemagh, Naime, Vitae, Author, Hammoudi, Zoheir, Vitae, Author, 2014. Automatic censoring CFAR detector for heterogeneous environments. AEU - Int. J. Electron. Commun. 68 (12), 1253-1260. https://doi.org/10.1016/j.aeue.2014.07.006
  4. Chen, B., Li, H., Wei, Y., Yao, B., October 2010. Tunnel effect elimination in multi beam bathymetry sonar based on ap FFT algorithm. In: Proceedings of the IEEE 10th International Conference on Signal Processing (ICSP '10), pp. 2391-2394. Beijing, China.
  5. De Moustier, Christian, Martin, C. Kleinrock, 1986. Bathymetric artifacts in Sea Beam data: how to recognize them and what causes them". J. Geophys. Res. 91 (B3), 3407-3424. https://doi.org/10.1029/JB091iB03p03407
  6. Du, Weidong, Zhou, Tian, Li, Haisen, Chen, Baowei, Wei, Bo, 2016. ADOS-CFAR algorithm for multibeam seafloor terrain detection. Int. J. Distributed Sens. Netw. 12 (8).
  7. Ferrini, Vicki Lynn, 2004. Dynamics of Nearshore Sedimentary Environments Revealed through the Analysis of Multibeam Sonar Data. State University of New York.
  8. Gao, Gui, Jiang, Yong-Mei, Zhang, Qi, Gang-Yao, Kuang, De-Ren, Li, 2006. Fast acquirement of vehicle targets from high-resolution SAR images based on combining multi-feature. Acta Electron. Sin. 34 (9), 1663-1667. https://doi.org/10.3321/j.issn:0372-2112.2006.09.024
  9. Gao, G., Liu, L., Zhao, L.J., Shi, G.T., Kuang, G.Y., 2009. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Trans. Geosci. Rem. Sens. 47 (6), 1685-1697. https://doi.org/10.1109/TGRS.2008.2006504
  10. Gao, Jue, Li, Haisen, Chen, Baowei, Zhou, Tian, Xu, Chao, Du, Weidong, 2017. Fast two-dimensional subset censored CFAR method for multiple objects detection from acoustic image. IET Radar, Sonar Navig. 11 (3), 505-512. https://doi.org/10.1049/iet-rsn.2016.0322
  11. Jung, D., Kim, J., Byun, G., 2018. Numerical modeling and simulation technique in time-domain for multibeam echo sounder. Int. J. Nav. Architect. Ocean. Eng. 10 (2).
  12. Kammerer, Edouard, Sep. 2000. A New Method for the Removal of Refraction Artifacts in Multibeam Echosounder Systems. University of New Brunswick, pp. 35-60.
  13. Kronauge, M., Rohling, H., 2013. Fast two-dimensional CFAR procedure". IEEE Trans. Aero. Electron. Syst. 49 (3), 1817-1823. https://doi.org/10.1109/TAES.2013.6558022
  14. Rohling, Hermann, 1983. Radar cfar thresholding in clutter and multiple target situations. IEEE Trans. Aero. Electron. Syst. (4), 608-621P. AES-19. https://doi.org/10.1109/TAES.1983.309350
  15. Tao, DingDoulgeris, Anthony, P., Camilla, Brekke, 2016. A segmentation-based CFAR detection algorithm using truncated statistics. IEEE Trans. Geosci. Rem. Sens. 54 (5), 2887-2898. https://doi.org/10.1109/TGRS.2015.2506822
  16. Villar, Sebastian A., Acosta, Gerardo G., Senna, Andre Sousa, Rozenfeld, Alejandro, 2013. Pipeline Detection System from Acoustic Images Utilizing CA-CFAR. Oceans - San Diego.
  17. Villar, Sebastian A., De Paula, Mariano, Solari, Franco J., 2017. A framework for acoustic segmentation using order statistic-constant false alarm rate in two dimensions from sidescan sonar data. IEEE J. Ocean. Eng. 99, 1-14.
  18. Wei, Y.-K., Weng, N.-N., Li, H.-S., Yao, B., Zhou, T., 2010. Eliminating the tunnel effect in multi-beam bathymetry sonar by using the recursive least square-Laguerre lattice algorithm. J. Harbin Eng. Univ. 31 (5), 547-552. https://doi.org/10.3969/j.issn.1006-7043.2010.05.001
  19. Yukuo, W., Baowei, C., Haisen, L., 2011. Tunnel effect elimination in multibeam bathymetry sonar based on MVDR algorithm. Hydrographic Surveying and Charting 31 (1), 28-31. https://doi.org/10.3969/j.issn.1671-3044.2011.01.008
  20. YuZhe, F., HaiSen, L., Chao, X., BaoWei, C., Du, WeiDong, 2017. Spatial correlation of underwater bubble clouds based on acoustic scattering. Acta Phys. Sin. 66 (1).