Acknowledgement
This research was financially supported by the Ministry of Science and Technology, Taiwan, under grants MOST 108-2221-E-006 -087 -MY3 and MOST 109-2217-E-006 -002 -MY3.
References
- Chen, L., Sun, L., Zang, J., Hillis, A.J., Plummer, A.R., 2016. Numerical study of roll motion of a 2-D floating structure in viscous flow. J. Hydrodyn. 28 (4), 544-563. https://doi.org/10.1016/S1001-6058(16)60659-5.
- Chow, J.H., Ng, E.Y.K., 2016. Strongly coupled partitioned six degree-of-freedom rigid body motion solver with Aitken's dynamic under-relaxation. Int. J. Naval Architect. Ocean Eng. 8 (4), 320-329. https://doi.org/10.1016/j.ijnaoe.2016.04.001.
- Davidson, J., Ringwood, J.V., 2017. Mathematical modelling of mooring systems for wave energy converters - a review. Energies 10 (5). https://doi.org/10.3390/en10050666.
- Devolder, B., Schmitt, P., Rauwoens, P., Elsaesser, B., Troch, P., 2015. A Review of the Implicit Motion Solver Algorithm in OpenFOAM® to Simulate a Heaving Buoy. 18th Numerical Towing Tank Symposium.
- Dunbar, A.J., Craven, B.A., Paterson, E.G., 2015. Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms. Ocean Eng. 110, 98-105. https://doi.org/10.1016/j.oceaneng.2015.08.066.
- Forster, C., Wall, W.A., Ramm, E., 2007. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196 (7), 1278-1293. https://doi.org/10.1016/j.cma.2006.09.002.
- Hou, G., Wang, J., Layton, A., 2012. Numerical methods for fluid-structure interaction - a review. Commun. Comput. Phys. 12 (2), 337-377. https://doi.org/10.4208/cicp.291210.290411s.
- Hsiao, Y., Tsai, C.L., Chen, Y.L., Wu, H.L., Hsiao, S.C., 2020. Simulation of wave-current interaction with a sinusoidal bottom using OpenFOAM. Appl. Ocean Res. 94, 101998. https://doi.org/10.1016/j.apor.2019.101998
- Ito, S., 1977. Study of the Transient Heave Oscillation of a Floating Cylinder. Massachusetts Institute of Technology.
- Joung, T.H., Sammut, K., He, F., Lee, S.K., 2012. Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis. Int. J. Naval Architect. Ocean Eng. 4 (1), 44-56. https://doi.org/10.3744/JNAOE.2012.4.1.044
- Jung, K.H., Chang, K.-A., Jo, H.J., 2006. Viscous effect on the roll motion of a rectangular structure. J. Eng. Mech. 132 (2), 190-200. https://doi.org/10.1061/(asce)0733-9399(2006)132:2(190)
- Kim, M., Jung, K.H., Park, S.B., Lee, G.N., Duong, T.T., Suh, S.B., Park, I.R., 2020. Experimental and numerical estimation on roll damping and pressure on a 2-D rectangular structure in free roll decay test. Ocean Eng. 196, 106801. https://doi.org/10.1016/j.oceaneng.2019.106801
- Koo, W., Kim, J.D., 2015. Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth. Int. J. Naval Architect. Ocean Eng. 7 (1), 115-127. https://doi.org/10.1515/ijnaoe-2015-0009
- Kuttler, U., Wall, W.A., 2008. Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43 (1), 61-72. https://doi.org/10.1007/s00466-008-0255-5.
- Lara, J.L., Di Paolo, B., Barajas, G., Losada, I.J., 2018. Wave and current interaction with moored floating bodies using overset method. In: The 13th OpenFOAM Workshop. Shanghai, China.
- Luongo, A., Zulli, D., 2013. Mathematical models of beams and cables. In: Mathematical Models of Beams and Cables. https://doi.org/10.1002/9781118577554.
- Malta, E.B., Goncalves, R.T., Matsumoto, F.T., Pereira, F.R., Fujarra, A.L.C., Nishimoto, K., 2010. Damping coefficient analyses for floating offshore structures. In: Proceedings of the 29th International Conference on Offshore Mechanics and Arctic Engineering. Shanghai, China. OMAE2010-20093.
- Mavrakos, S.A., Papazoglou, V.J., Triantafyllou, M.S., Hatjigeorgiou, J., 1996. Deep water mooring dynamics. Mar. Struct. 9 (2), 181-209. https://doi.org/10.1016/0951-8339(94)00019-O.
- Maza, M., Lara, J.L., Losada, I.J., 2013. A coupled model of submerged vegetation under oscillatory flow using NaviereStokes equations. Coast. Eng. 80, 16-34. https://doi.org/10.1016/j.coastaleng.2013.04.009
- Newmark, N.M., 1959. A method of computation for structural dynamics. J. Eng. Mech. Div. 85 (3), 67-94. https://doi.org/10.1061/JMCEA3.0000098
- Niewiarowski, A., Adriaenssens, S., Pauletti, R.M., Addi, K., Deike, L., 2018. Modeling underwater cable structures subject to breaking waves. Ocean Eng. 164 (June), 199-211. https://doi.org/10.1016/j.oceaneng.2018.06.013.
- OpenCFD, 2020. OpenFOAM: the Open Source CFD Toolbox: User Guide.
- Pinguet, R., Kanner, S., Benoit, M., Molin, B., 2020. Validation of open-source overset mesh method using free-decay tests of floating offshore wind turbine. In: The 30th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
- Pomeranz, S.B., 2017. Aitken's D2 method extended. Cog. Math. 4 (1) https://doi.org/10.1080/23311835.2017.1308622.
- Ransley, E.J., Greaves, D., Raby, A., Simmonds, D., Hann, M., 2017. Survivability of wave energy converters using CFD. Renew. Energy 109, 235-247. https://doi.org/10.1016/j.renene.2017.03.003.
- van Loon, R., Anderson, P.D., van de Vosse, F.N., Sherwin, S.J., 2007. Comparison of various fluid-structure interaction methods for deformable bodies. Comput. Struct. 85 (11-14), 833-843. https://doi.org/10.1016/j.compstruc.2007.01.010.
- Wu, Y.T., Hsiao, S.C., Huang, Z.C., Hwang, K.S., 2012. Propagation of solitary waves over a bottom-mounted barrier. Coast. Eng. 62, 31-47. https://doi.org/10.1016/j.coastaleng.2012.01.002
- Yvin, C., Leroyer, A., Visonneau, M., Queutey, P., 2018. Added mass evaluation with a finite-volume solver for applications in fluidestructure interaction problems solved with co-simulation. J. Fluid Struct. 81, 528-546. https://doi.org/10.1016/j.jfluidstructs.2018.05.008.