DOI QR코드

DOI QR Code

Numerical simulations of hydrodynamic loads and structural responses of a Pre-Swirl Stator

  • Bakica, Andro (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb) ;
  • Vladimir, Nikola (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb) ;
  • Jasak, Hrvoje (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb) ;
  • Kim, Eun Soo (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • Received : 2021.06.24
  • Accepted : 2021.09.27
  • Published : 2021.11.30

Abstract

This paper investigates the effect of different flow models on the Pre-Swirl-Stator structural response from the perspective of a non-existing unified design procedure. Due to viscous effects near the propeller plane, the hydrodynamic solution is calculated by Computational Fluid Dynamics (CFD). Three different models are analysed: without the propeller, with the actuator disk and with the propeller. The main intention of this paper is to clarify the effects of the propeller model on the structural stresses in calm-water and waves which include the ship motion. CFD simulations are performed by means of OpenFOAM, while the structural response is calculated by means of the Finite Element Method (FEM) solver NASTRAN. Calm-water results have shown the inclusion of the propeller necessary from the design perspective, while the wave simulations have shown negligible propeller influence on the resulting stresses arising from the ship motions.

Keywords

Acknowledgement

This research was supported by the Croatian Science Foundation under the project Green Modular Passenger Vessel for Mediterranean (GRiMM), (Project No. UIP-2017-05-1253). Also, the funding within the international collaborative project Global Core Research Center for Ships and Offshore Plants (GCRC-SOP, No. 2011-0030669), established by the Republic of Korea Government (MSIP) through the National Research Foundation of South Korea (NRF) is greatly acknowledged.

References

  1. Bakica, A., Gatin, I., Vukcevic, V., Jasak, H., Vladimir, N., 2019. Accurate assessment of ship-propulsion characteristics using CFD. Ocean Eng 175, 149-162. https://doi.org/10.1016/j.oceaneng.2018.12.043
  2. Bakica, A., Malenica, S., Vladimir, N., 2020a. Hydro-structure coupling of CFD and FEM - Quasi-static approach. Ocean Eng 217.
  3. Bakica, A., Vladimir, N., Gatin, I., Jasak, H., 2020b. CFD Simulation of Loadings on Circular Duct in Calm Water and Waves. Ships and Offshore Structures. https://doi.org/10.1080/17445302.2020.1730082 (in press).
  4. Beaudoin, M., Jasak, H., 2008. Development of a generalized grid interface for turbomachinery simulations with OpenFOAM. In: Open Source CFD International Conference, pp. 1-11. URL papers3://publication/uuid/81CCD00D-DF48-4595-B591-C577955CEA06.
  5. Carlton, J., 2012. Marine Propellers and Propulsion, third ed.
  6. Carrica, P.M., Fu, H., Stern, F., 2011. Computations of self-propulsion free to sink and trim and of motions in head waves of the KRISO Container Ship (KCS) model. Appl. Ocean Res. 33, 309-320. https://doi.org/10.1016/j.apor.2011.07.003
  7. CFD Workshop Website, 2010. Gothenburg 2010: a Workshop on CFD in ship hydrodynamics. \\url. http://www.insean.cnr.it/sites/default/files/gothenburg2010/index.html.
  8. Cvijetic, G., Gatin, I., Vukcevic, V., Jasak, H., 2018. Harmonic balance developments in OpenFOAM. Computers and Fluid 172, 632-643. https://doi.org/10.1016/j.compfluid.2018.02.023
  9. Dang, J., Dong, G., Chen, H., 2012. An exploratory study on the working principles of energy saving devices (ESDs): PIV, CFD investigations and ESD design guidelines. In: International Conference on Ocean, Offshore and Arctic Engineering, p. 25. URL. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/OMAE2012-83053.
  10. Furcas, F., Gaggero, S., 2021. Pre-swirl stators design using a coupled BEM-RANSE approach. Ocean Eng 222 (January), 108579. https://doi.org/10.1016/j.oceaneng.2021.108579. URL.
  11. Gaggero, S., Villa, D., Viviani, M., 2017. An extensive analysis of numerical ship self-propulsion prediction via a coupled BEM/RANS approach. Appl. Ocean Res. 66, 55-78. https://doi.org/10.1016/j.apor.2017.05.005. URL.
  12. Gatin, I., Vukcevic, V., Jasak, H., Rusche, H., 2017. Enhanced coupling of solid body motion and fluid flow in finite volume framework. Ocean Eng 143 (December 2016), 295-304. https://doi.org/10.1016/j.oceaneng.2017.08.009
  13. Gokce, M.K., Kinaci, O.K., Alkan, A.D., 2019. Self-propulsion estimations for a bulk carrier. Ships Offshore Struct. 14 (7), 656-663. https://doi.org/10.1080/17445302.2018.1544108. URL.
  14. Huang, J., Carrica, P.M., Stern, F., 2007. Coupled ghost fluid/twoephase level set method for curvilinear bodyefitted grids. Int. J. Numer. Methods Fluid. 44, 867-897. https://doi.org/10.1002/fld.1499
  15. Jasak, H., Uroic, T., 2020. Practical computational fluid dynamics with the finite volume method. In: Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids. http://link.springer.com/10.1007/978-3-030-37518-8.
  16. Jasak, H., Vukcevic, V., Gatin, I., 2015. Numerical simulation of wave loads on static Offshore structures. In: CFD for Wind and Tidal Offshore Turbines. Springer Tracts in Mechanical Engineering, pp. 95-105.
  17. Jasak, H., Vukcevic, V., Gatin, I., Lalovic, I., 2019. CFD validation and grid sensitivity studies of full scale ship self propulsion. Int. J. Naval Architect. Ocean Eng. 11 (1), 33-43. https://doi.org/10.1016/j.ijnaoe.2017.12.004
  18. Ju, H.B., Jang, B.S., Lee, D.B., Kim, H.J., Park, C.K., 2018. A simplified structural safety assessment of a fin-typed energy saving devices subjected to nonlinear hydrodynamic load. Ocean Eng 149 (June 2017), 245-259. https://doi.org/10.1016/j.oceaneng.2017.12.022. URL.
  19. Kim, J.H., Choi, J.E., Choi, B.J., Chung, S.H., 2014. Twisted rudder for reducing fuel-oil consumption. Int. J. Naval Architect. Ocean Eng. 6 (3), 715-722. https://doi.org/10.2478/IJNAOE-2013-0207. URL.
  20. Kim, J.H., Choi, J.E., Choi, B.J., Chung, S.H., Seo, H.W., 2015. Development of Energy-Saving devices for a full Slow-Speed ship through improving propulsion performance. Int. J. Naval Architect. Ocean Eng. 7 (2), 390-398. https://doi.org/10.1515/ijnaoe-2015-0027. URL.
  21. Lee, D.B., Jang, B.S., Kim, H.J., 2016. Development of procedure for structural safety assessment of energy saving device subjected to nonlinear hydrodynamic load. Ocean Eng 116, 165-183. https://doi.org/10.1016/j.oceaneng.2016.02.038. URL.
  22. Lim, S.S., Kim, T.W., Lee, D.M., Kang, C.G., Kim, S.Y., 2014. Parametric study of propeller boss cap fins for container ships. Int. J. Naval Architect. Ocean Eng. 6 (2), 187-205. https://doi.org/10.2478/IJNAOE-2013-0172. URL.
  23. Min, K.-S., Chang, B.-J., Seo, H.-W., 2009. Study on the Contra-Rotating Propeller system design and full-scale performance prediction method. Int. J. Naval Architect. Ocean Eng. 1 (1), 29-38. https://doi.org/10.3744/JNAOE.2009.1.1.029
  24. Nowruzi, H., Najafi, A., 2019. An experimental and CFD study on the effects of different pre-swirl ducts on propulsion performance of series 60 ship. Ocean Eng 173 (424), 491-509. https://doi.org/10.1016/j.oceaneng.2019.01.007. URL.
  25. Paboeuf, S., Cassez, A., 2017. ESD structural issue - UPstream device. Int. Shipbuild. Prog. 63 (3-4), 291-314. https://doi.org/10.3233/ISP-170135
  26. Paik, K.J., Hwang, S., Jung, J., Lee, T., Lee, Y.Y., Ahn, H., Van, S.H., 2015. Investigation on the wake evolution of Contra-rotating propeller using RANS computation and SPIV measurement. Int. J. Naval Architect. Ocean Eng. 7 (3), 595-609. https://doi.org/10.1515/ijnaoe-2015-0042. URL.
  27. Park, S., Oh, G., Hyung Rhee, S., Koo, B.Y., Lee, H., 2015. Full scale wake prediction of an energy saving device by using computational fluid dynamics. Ocean Eng 101, 254-263. https://doi.org/10.1016/j.oceaneng.2015.04.005. URL.
  28. Popovac, M., Hanjalic, K., 2007. Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow, Turbul. Combust. 78 (2), 177-202. https://doi.org/10.1007/s10494-006-9067-x
  29. Prins, H.J., Flikkema, M.B., Schuiling, B., Xing-Kaeding, Y., Voermans, A.A., Muller, M., Coache, S., Hasselaar, T.W., Paboeuf, S., 2016. Green retrofitting through optimisation of hull-propulsion interaction - GRIP. Transport. Res. Procedia 14, 1591-1600. https://doi.org/10.1016/j.trpro.2016.05.124 (0).
  30. Sakamoto, N., Kume, K., Kawanami, Y., Kamiirisa, H., Mokuo, K., Tamashima, M., 2019. Evaluation of hydrodynamic performance of pre-swirl and post-swirl ESDs for merchant ships by numerical towing tank procedure. Ocean Eng 178 (February), 104-133. https://doi.org/10.1016/j.oceaneng.2019.02.067. URL.
  31. Shin, H.J., Lee, J.S., Lee, K.H., Han, M.R., Hur, E.B., Shin, S.C., 2013. Numerical and experimental investigation of conventional and un-conventional preswirl duct for VLCC. Int. J. Naval Architect. Ocean Eng. 5 (3), 414-430. https://doi.org/10.2478/IJNAOE-2013-0143. URL.
  32. Shin, Y.J., Kim, M.C., Lee, J.H., Song, M.S., 2018. A numerical and experimental study on the performance of a twisted rudder with wavy configuration. Int. J. Naval Architect. Ocean Eng. 1-12. https://doi.org/10.1016/j.ijnaoe.2018.02.014. URL.
  33. Siemens, 2014. NX NASTRAN User's Guide.
  34. Sun, Y., Beckermann, C., 2007. Sharp interface tracking using the phase-field equation. J. Comput. Phys. 220, 626-653. https://doi.org/10.1016/j.jcp.2006.05.025
  35. Tsou, W.H., Guan, P.C., Chang, W.H., Chen, C.J., 2019. Structural design and strength estimation of energy saving Y-fin by using finite element method. In: Proceedings of the 14th International Symposium PRADS 2019, vol. 2, pp. 209-231.
  36. Vukcevic, V., 2016. Numerical Modelling of Coupled Potential and Viscous Flow for Marine Applications. Ph.D. thesis. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb.
  37. Vukcevic, V., Jasak, H., Malenica, S., 2016a. Decomposition model for naval hydrodynamic applications, Part I: computational method. Ocean Eng. 121, 37-46. https://doi.org/10.1016/j.oceaneng.2016.05.022
  38. Vukcevic, V., Jasak, H., Malenica, S., 2016b. Decomposition model for naval hydrodynamic applications, Part II: verification and validation. Ocean Eng. 121, 76-88. https://doi.org/10.1016/j.oceaneng.2016.05.021
  39. Wang, J., Wan, D., 2020. CFD study of ship stopping maneuver by overset grid technique. Ocean Eng 197 (May 2019), 106895. https://doi.org/10.1016/j.oceaneng.2019.106895. URL.
  40. Weller, H.G., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object oriented techniques. Comput. Phys. 12, 620-631. https://doi.org/10.1063/1.168744