Acknowledgement
This work is supported by the National Natural Science Foundation of China (Projects: 51879057, 51779052 and 51809064).
References
- Aguiar, A.P., Hespanha, J.P., 2007. Trajectory-tracking and path-following of under-actuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Automat. Contr. 52 (8), 1362-1379. https://doi.org/10.1109/TAC.2007.902731
- Bhatta, P., Leonard, N.E., 2008. Nonlinear gliding stability and control for vehicles with hydrodynamic forcing. Automatica 44 (5), 1240-1250. https://doi.org/10.1016/j.automatica.2007.10.006
- Canudas, d.W.C., Olguin, D.O., 2000. Nonlinear control of an underwater vehicle/ manipulator with composite dynamics. IEEE Trans. Contr. Syst. Technol. 8 (6), 948-960. https://doi.org/10.1109/87.880599
- Do, K., Pan, J., Jiang, Z., 2004. Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean. Eng. 31 (16), 1967-1997. https://doi.org/10.1016/j.oceaneng.2004.04.006
- Elmokadem, T., Zribi, M., Youcef-Toumi, K., 2016. Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dynam. 84 (2), 1079-1091. https://doi.org/10.1007/s11071-015-2551-x
- Fernandes, D., Sorensen, A.J., Pettersen, K.Y., Donha, D.C., 2015. Output feedback motion control system for observation class ROVs based on a high-gain state observer: theoretical and experimental results. Contr. Eng. Pract. 39, 90-102. https://doi.org/10.1016/j.conengprac.2014.12.005
- Joe, H., Kim, M., Yu, S.C., 2014. Second-order sliding mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dynam. 78 (1), 183-196. https://doi.org/10.1007/s11071-014-1431-0
- Khalil, H.K., 2002. Nonlinear Systems, third ed. Prentice Hall, Upper Saddle River.
- Kokotovic, P., Khalil, H.K., O'reilly, J., 1999. Singular Perturbation Methods in Control: Analysis and Design. ACADEMIC PRESS INC.
- Lapierre, L., Jouvencel, B., 2008. Robust nonlinear path-following control of an AUV. IEEE J. Ocean. Eng. 33 (2), 89-102. https://doi.org/10.1109/JOE.2008.923554
- Lei, M., 2020. Nonlinear diving stability and control for an AUV via singular perturbation. Ocean. Eng. 197.
- Lekkas, A.M., Fossen, T.I., 2013. Line-of-Sight guidance for path following of marine vehicles (Chapter 5). Book: Advanced in Marine Robotics. Lambert Academic Publishing.
- Park, B.S., 2015. Adaptive formation control of underactuated autonomous underwater vehicles. Ocean. Eng. 96, 1-7. https://doi.org/10.1016/j.oceaneng.2014.12.016
- Peng, Z.H., Wang, J., 2018b. Output-feedback path following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems 48 (4), 535-544. https://doi.org/10.1109/tsmc.2017.2697447
- Peng, Z., Wang, J., Han, Q.L., 2018. Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization. IEEE Trans. Ind. Electron. 66 (11), 8724-8732. https://doi.org/10.1109/tie.2018.2885726
- Peng, Z.H., Wang, J.S., Wang, J., 2019. Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation. IEEE Trans. Ind. Electron. 66 (5), 3627-3635. https://doi.org/10.1109/tie.2018.2856180
- Peymani, E., Fossen, T.I., 2015. Path following of underwater robots using Lagrange multipliers. Robot. Autonom. Syst. 67, 44-52. https://doi.org/10.1016/j.robot.2014.10.011
- Prestero, T., 2001. Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle. Ph.D. Thesis, Massachusetts Institute of Technology.
- Qi, X., 2014. Adaptive coordinated tracking control of multiple autonomous underwater vehicles. Ocean. Eng. 91, 84-90. https://doi.org/10.1016/j.oceaneng.2014.08.019
- Ren, R.Y., Zou, Z.J., Wang, X.G., 2014. A two-time scale control law based on singular perturbations used in rudder roll stabilization of ships. Ocean. Eng. 88, 488-498. https://doi.org/10.1016/j.oceaneng.2014.07.006
- Rezazadegan, F., Shojaei, K., Sheikholeslam, F., Chatraei, A., 2015. A novel approach to 6-dof adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties. Ocean. Eng. 107, 246-258. https://doi.org/10.1016/j.oceaneng.2015.07.040
- Saberi, A., Khalil, H.K., 1984. Quadratic-type Lyapunov functions for singularly perturbed systems. IEEE Trans. Automat. Contr. 29, 542-550. https://doi.org/10.1109/TAC.1984.1103586
- Salgado-Jimenez, T., Spiewak, J.M., Fraisse, P., Jouvencel, B., 2004. A robust control algorithm for AUV: based on a high order sliding mode. Proceedings of the MTS/IEEE International Conference. OCEANS'04, Kobe, Japan, pp. 276-281.
- Sheu, D., Vinh, N.X., Howe, R.M., 1991. Application of singular perturbation methods for three-dimensional minimum-time interception. J. Guid. Contr. Dynam. 14 (2), 360-367. https://doi.org/10.2514/3.20647
- Shinar, J., 1983. On applications of singular perturbation techniques in nonlinear optimal control. Automatica 19 (2), 203-211. https://doi.org/10.1016/0005-1098(83)90093-6
- Xiang, X., Yu, C., Zhang, Q., 2017. Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res. 84, 165-177. https://doi.org/10.1016/j.cor.2016.09.017
- Xu, J., Wang, M., Qiao, L., 2015. Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean. Eng. 105, 54-63. https://doi.org/10.1016/j.oceaneng.2015.06.022
- Yi, B.W., Qiao, L., Zhang, W.D., 2016. Two-time scale path following of under-actuated marine surface vessels: design and stability analysis using singular perturbation methods. Ocean. Eng. 124, 287-297. https://doi.org/10.1016/j.oceaneng.2016.07.006
- Zhang, F., Tan, X., 2015. Passivity-based stabilization of underwater gliders with a control surface. J. Dyn. Syst. Meas. Contr. 137 (6), 061006. https://doi.org/10.1115/1.4029078
- Zhang, L.J., Qi, X., Pang, Y.J., 2009. Adaptive output feedback control based on DRFNN for AUV. Ocean. Eng. 36, 716-722. https://doi.org/10.1016/j.oceaneng.2009.03.011