DOI QR코드

DOI QR Code

Navigation safety domain and collision risk index for decision support of collision avoidance of USVs

  • Zhou, Jian (School of Marine Science and Technology, Tianjin University) ;
  • Ding, Feng (School of Marine Science and Technology, Tianjin University) ;
  • Yang, Jiaxuan (Navigation College, Dalian Maritime University) ;
  • Pei, Zhengqiang (Risk Management Center of Transportation and Logistics Division, China Merchants Group) ;
  • Wang, Chenxu (School of Marine Science and Technology, Tianjin University) ;
  • Zhang, Anmin (School of Marine Science and Technology, Tianjin University)
  • 투고 : 2020.11.09
  • 심사 : 2021.03.10
  • 발행 : 2021.11.30

초록

This paper proposes a decision support model for USVs to improve the accuracy of collision avoidance decision-making. It is formed by Navigation Safety Domain (NSD) and domain-based Collision Risk Index (CRI), capable of determining the collision stage and risk between multiple ships. The NSD is composed of a warning domain and a forbidden domain, which is constructed under the constraints of COLREGs (International Regulations for Preventing Collisions at Sea). The proposed domain based CRI takes the radius of NSD in various encounter situations as threshold parameters. It is found that the value of collision risk in any directions can be calculated, including actual value and risk threshold. A catamaran USV and 6 given vessels are taken as study objects to validate the proposed model. It is found that the judgment of collision stage is accurate and the azimuth range of risk exists can be detected, hence the ships can take direct and effective collision avoidance measures. According to the relation between the actual value of CRI and risk threshold, the decision support rules are summarized, and the specific terms of COLREGs to be followed in each encounter situation are given.

키워드

과제정보

Authors' deepest gratitude goes to the editors and anonymous reviewers for their valuable work and thoughtful suggestions that have helped improve this manuscript substantially.

참고문헌

  1. Ahn, J.H., Rhee, K.P., You, Y.J., 2012. A study on the collision avoidance of a ship using neural networks and fuzzy logic. Appl. Ocean Res. 37, 162-173. https://doi.org/10.1016/j.apor.2012.05.008
  2. Campbell, S., Naeem, W., 2012. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance maneuver. Annu. Rev. Contr. 36, 267-283. https://doi.org/10.1016/j.arcontrol.2012.09.008
  3. Chen, P.F., Huang, Y.M., Mou, J.M., Van Gelder, P.H.A.J.M., 2019. Probabilistic risk analysis for ship-ship collision: State-of-the-art. Saf. Sci. 121, 451-473.
  4. Chang, C.Y., Zhang, G., Wang, N.N., 2020. The international legal status of the unmanned maritime vehicles. Mar. Pol. 113, 103830. https://doi.org/10.1016/j.marpol.2020.103830
  5. Eriksen, B.-O.H., Breivik, M., Wilthil, E.F., Falten, A.L., Brekke, E.F., 2019. The branching-course MPC algorithm for maritime collision avoidance. J. Field Robot. 36, 1222-1249. https://doi.org/10.1002/rob.21900
  6. Fujii, Y., Tanaka, K., 1971. Traffic capacity. J. Navig. 24, 543-552. https://doi.org/10.1017/S0373463300022384
  7. Felski, A., Zwolak, K., 2020. The ocean-going autonomous ship-challenges and threats. J. Mar. Sci. Eng. 8, 41. https://doi.org/10.3390/jmse8010041
  8. Gang, L.H., Wang, Y.H., Sun, Y., Zhou, L.P., Zhang, M.H., 2016. Estimation of vessel risk index based on support vector machine. Adv. Mech. Eng. 8, 1-10.
  9. Han, J., Cho, Y., Kim, J., Kim, J., Son, N., Kim, S.Y., 2020. Autonomous collision detection and avoidance for ARAGON USV: development and field test. Journal of Field Robotics, Accessed on August 10. https://doi.org/10.1002/rob.21935 [Online].
  10. Huang, Y.M., Chen, L.Y., Chen, P.F., et al., 2020. Ship collision avoidance methods: State-of-the-art. Saf. Sci. 121, 451-473. https://doi.org/10.1016/j.ssci.2019.09.018
  11. He, Y.X., Huang, L.W., Xiong, Y., Hu, W.X., 2015. The research of ship ACA actions at different stages on head-on situation based on CRI and COLREGS. J. Coast Res. 73, 735-740. https://doi.org/10.2112/SI73-126.1
  12. International Maritime Organization (IMO), 2018. Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS). http://www.imo.org. (Accessed 10 August 2020).
  13. International Maritime Organization (IMO), 1972. [with Amendments Adopted from December 2009], Convention on the International Regulations for Preventing Collisions at Sea. http://www.imo.org. (Accessed 10 August 2020).
  14. Kearon, J., 1979. Computer Programs for Collision Avoidance and Track Keeping. Proceeding Mathematical Aspects of Marine Traffic, London, UK.
  15. Kuwata, Y., Wolf, M.T., Zarzhitsky, D., Huntsberger, T.L., 2014. Safe maritime autonomous navigation with COLREGS, using velocity obstacles. IEEE J. Ocean. Eng. 39, 110-119. https://doi.org/10.1109/JOE.2013.2254214
  16. Liu, Z.Z., Zhang, Y.M., Xu, X., Yuan, C., 2016. Unmanned surface vehicles: an overview of developments and challenges. Annu. Rev. Contr. 41, 71-93. https://doi.org/10.1016/j.arcontrol.2016.04.018
  17. Lyu, H.G., Yin, Y., 2019. COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields. J. Navig. 72 (3), 588-608. https://doi.org/10.1017/s0373463318000796
  18. Li, B., Pang, F.W., 2013. An approach of vessel collision risk assessment based on the D-S evidence theory. Ocean. Eng. 74, 16-21. https://doi.org/10.1016/j.oceaneng.2013.09.016
  19. Li, R., 2019. On the legal status of unmanned ships. China Ocean Law Review 4, 149-190.
  20. Ma, Y., Zhao, Y., Wang, Y., Gan, L., Zheng, Y., 2020. Collision-avoidance under COLREGS for unmanned surface vehicles via deep reinforcement learning. Marit. Pol. Manag. 47, 665-686. https://doi.org/10.1080/03088839.2020.1756494
  21. Naeem, W., Henrique, S.C., Hu, L., 2016. A reactive COLREGs-compliant navigation strategy for autonomous maritime navigation. IFAC Proceeding 49, 207-213.
  22. Pu, H.Y., Liu, Y., Luo, J., Xie, S.R., Peng, Y., et al., 2020. Development of an unmanned surface vehicle for the emergency response mission of the 'Sanchi' oil tanker collision and explosion accident. Appl. Sci. 10, 2704. https://doi.org/10.3390/app10082704
  23. Porathe, T., 2019. Maritime Autonomous Surface Ships (MASS) and the COLREGS: do we need quantified rules or is "the ordinary practice of seamen" specific enough? International Journal on Marine Navigation and Safety of Sea Transportation 13 (3), 511-517. https://doi.org/10.12716/1001.13.03.04
  24. Svec, P., Thakur, A., Raboin, E., Shah, B.C., Gupta, S.K., 2014. Target following with motion prediction for unmanned surface vehicle operating in cluttered environments. Aut. Robots 36 (4), 383-405. https://doi.org/10.1007/s10514-013-9370-z
  25. Song, L.F., Su, Y.R., Dong, Z.P., 2018. A two-level dynamic obstacle avoidance algorithm for unmanned surface vehicles. Ocean. Eng. 170, 351-360. https://doi.org/10.1016/j.oceaneng.2018.10.008
  26. Savvaris, A., Niu, H., Oh, H., Tsourdos, A., 2014. Development of collision avoidance algorithms for the C-enduro USV. IFAC Proceeding 47, 12174-12181.
  27. Shen, H.Q., Hashimoto, H., Matsuda, A., et al., 2019. Automatic collision avoidance of multiple ships based on deep Q-learning. Appl. Ocean Res. 86, 268-288. https://doi.org/10.1016/j.apor.2019.02.020
  28. Szlapczynski, R., Szlapczynska, J., 2017. Review of ship safety domains: models and applications. Ocean. Eng. 145, 277-289. https://doi.org/10.1016/j.oceaneng.2017.09.020
  29. Thompson, F., Guihen, D., 2019. Review of mission planning for autonomous marine vehicle fleets. J. Field Robot. 36 (2), 333-354. https://doi.org/10.1002/rob.21819
  30. Tan, G.G., Jin, Z., Zhuang, J.Y., Wan, L., Sun, H.B., Sun, Z.Y., 2020. Fast marching square method based intelligent navigation of the unmanned surface vehicle swarm in restricted waters. Appl. Ocean Res. 95, 102018. https://doi.org/10.1016/j.apor.2019.102018
  31. Wang, H.J., Guo, F., Yao, H.F., He, S.S., Xu, X., 2019. Collision avoidance planning method of USV based on improved ant colony optimization algorithm. IEEE Access 7, 52964-52975. https://doi.org/10.1109/access.2019.2907783
  32. Woo, J.H., Kim, N.W., 2020. Collision avoidance for an unmanned surface vehicle using deep reinforcement learning. Ocean. Eng. 199, 107001. https://doi.org/10.1016/j.oceaneng.2020.107001
  33. Wang, N., 2010. An intelligent spatial collision risk based on the quaternion ship domain. J. Navig. 63, 733-749. https://doi.org/10.1017/S0373463310000202
  34. Wang, N., 2013. A novel analytical framework for dynamic quaternion ship domains. J. Navig. 66, 265-281. https://doi.org/10.1017/S0373463312000483
  35. Wang, Y.L., Yu, X.M., Liang, X., Li, B.A., 2018. A COLREGs-based obstacle avoidance approach for unmanned surface vehicles. Ocean. Eng. 169, 110-124. https://doi.org/10.1016/j.oceaneng.2018.09.012
  36. Wang, T.F., Yan, X.P., Wang, Y., Wu, Q., 2017. Ship domain model for multi-ship collision avoidance decision-making with COLREGs based on artificial potential field. International Journal on Marine Navigation and Safety of Sea Transportation 11, 85-92. https://doi.org/10.12716/1001.11.01.09
  37. Xie, S., Chu, X., Zheng, M., Liu, C., 2020. A composite learning method for multi-ship collision avoidance based on reinforcement learning and inverse control. Neurocomputing. Accessed on August 10. https://doi.org/10.1016/j.neucom.2020.05.089 [Online].
  38. Xu, W., Hu, J.Q., Yin, J.C., et al., 2016. Ship Automatic Collision Avoidance by Altering Course Based on Ship Dynamic Domain. IEEE Trustcom BigDataSE ISPA, Tianjin, China.
  39. Xu, X., Geng, X., Wen, Y., 2016. Modeling of ship collision risk index based on complex plane and its realization. International Journal on Marine Navigation and Safety of Sea Transportation 10, 251-256. https://doi.org/10.12716/1001.10.02.07
  40. Zereik, E., Bibuli, M., Miskovic, N., Ridao, P., Pascoal, A., 2018. Challenges and future trends in marine robotics. Annu. Rev. Contr. 46, 350-368. https://doi.org/10.1016/j.arcontrol.2018.10.002
  41. Zhang, X., Wang, C., Liu, Y., Chen, X., 2019. Decision-making for the autonomous navigation of maritime autonomous surface ships based on scene division and deep reinforcement learning. Sensors 19, 4055. https://doi.org/10.3390/s19184055
  42. Zhang, Y., Qu, D., Ke, J., Li, X., 2017. Dynamic obstacle avoidance for USV based on velocity obstacle and dynamic window method. J. Shanghai Univ. (Engl. Ed.) 23, 1-16.
  43. Zhou, J., Wang, C.X., Zhang, A.M., 2020. A COLREGs-based dynamic navigation safety domain for unmanned surface vehicles: a case study of Dolphin-I. J. Mar. Sci. Eng. 8, 264. https://doi.org/10.3390/jmse8040264
  44. Zhao, Y.X., Li, W., Shi, P., 2016. A real-time collision avoidance learning system for Unmanned Surface Vessels. Neurocomputing 182, 255-266. https://doi.org/10.1016/j.neucom.2015.12.028
  45. Zhen, R., Riveiro, M., Jin, Y.X., 2017. A novel analytic framework of real-time multivessel collision risk assessment for maritime traffic surveillance. Ocean. Eng. 145, 492-501. https://doi.org/10.1016/j.oceaneng.2017.09.015
  46. Zhou, X.Y., Huang, J.J., Wang, F.W., Wu, Z.L., Liu, Z.J., 2019. A study of the application barriers to the use of autonomous ships posed by the good seamanship requirement of COLREGs. J. Navig. 72, 1-16. https://doi.org/10.1017/s0373463318000656