과제정보
Authors' deepest gratitude goes to the editors and anonymous reviewers for their valuable work and thoughtful suggestions that have helped improve this manuscript substantially.
참고문헌
- Ahn, J.H., Rhee, K.P., You, Y.J., 2012. A study on the collision avoidance of a ship using neural networks and fuzzy logic. Appl. Ocean Res. 37, 162-173. https://doi.org/10.1016/j.apor.2012.05.008
- Campbell, S., Naeem, W., 2012. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance maneuver. Annu. Rev. Contr. 36, 267-283. https://doi.org/10.1016/j.arcontrol.2012.09.008
- Chen, P.F., Huang, Y.M., Mou, J.M., Van Gelder, P.H.A.J.M., 2019. Probabilistic risk analysis for ship-ship collision: State-of-the-art. Saf. Sci. 121, 451-473.
- Chang, C.Y., Zhang, G., Wang, N.N., 2020. The international legal status of the unmanned maritime vehicles. Mar. Pol. 113, 103830. https://doi.org/10.1016/j.marpol.2020.103830
- Eriksen, B.-O.H., Breivik, M., Wilthil, E.F., Falten, A.L., Brekke, E.F., 2019. The branching-course MPC algorithm for maritime collision avoidance. J. Field Robot. 36, 1222-1249. https://doi.org/10.1002/rob.21900
- Fujii, Y., Tanaka, K., 1971. Traffic capacity. J. Navig. 24, 543-552. https://doi.org/10.1017/S0373463300022384
- Felski, A., Zwolak, K., 2020. The ocean-going autonomous ship-challenges and threats. J. Mar. Sci. Eng. 8, 41. https://doi.org/10.3390/jmse8010041
- Gang, L.H., Wang, Y.H., Sun, Y., Zhou, L.P., Zhang, M.H., 2016. Estimation of vessel risk index based on support vector machine. Adv. Mech. Eng. 8, 1-10.
- Han, J., Cho, Y., Kim, J., Kim, J., Son, N., Kim, S.Y., 2020. Autonomous collision detection and avoidance for ARAGON USV: development and field test. Journal of Field Robotics, Accessed on August 10. https://doi.org/10.1002/rob.21935 [Online].
- Huang, Y.M., Chen, L.Y., Chen, P.F., et al., 2020. Ship collision avoidance methods: State-of-the-art. Saf. Sci. 121, 451-473. https://doi.org/10.1016/j.ssci.2019.09.018
- He, Y.X., Huang, L.W., Xiong, Y., Hu, W.X., 2015. The research of ship ACA actions at different stages on head-on situation based on CRI and COLREGS. J. Coast Res. 73, 735-740. https://doi.org/10.2112/SI73-126.1
- International Maritime Organization (IMO), 2018. Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS). http://www.imo.org. (Accessed 10 August 2020).
- International Maritime Organization (IMO), 1972. [with Amendments Adopted from December 2009], Convention on the International Regulations for Preventing Collisions at Sea. http://www.imo.org. (Accessed 10 August 2020).
- Kearon, J., 1979. Computer Programs for Collision Avoidance and Track Keeping. Proceeding Mathematical Aspects of Marine Traffic, London, UK.
- Kuwata, Y., Wolf, M.T., Zarzhitsky, D., Huntsberger, T.L., 2014. Safe maritime autonomous navigation with COLREGS, using velocity obstacles. IEEE J. Ocean. Eng. 39, 110-119. https://doi.org/10.1109/JOE.2013.2254214
- Liu, Z.Z., Zhang, Y.M., Xu, X., Yuan, C., 2016. Unmanned surface vehicles: an overview of developments and challenges. Annu. Rev. Contr. 41, 71-93. https://doi.org/10.1016/j.arcontrol.2016.04.018
- Lyu, H.G., Yin, Y., 2019. COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields. J. Navig. 72 (3), 588-608. https://doi.org/10.1017/s0373463318000796
- Li, B., Pang, F.W., 2013. An approach of vessel collision risk assessment based on the D-S evidence theory. Ocean. Eng. 74, 16-21. https://doi.org/10.1016/j.oceaneng.2013.09.016
- Li, R., 2019. On the legal status of unmanned ships. China Ocean Law Review 4, 149-190.
- Ma, Y., Zhao, Y., Wang, Y., Gan, L., Zheng, Y., 2020. Collision-avoidance under COLREGS for unmanned surface vehicles via deep reinforcement learning. Marit. Pol. Manag. 47, 665-686. https://doi.org/10.1080/03088839.2020.1756494
- Naeem, W., Henrique, S.C., Hu, L., 2016. A reactive COLREGs-compliant navigation strategy for autonomous maritime navigation. IFAC Proceeding 49, 207-213.
- Pu, H.Y., Liu, Y., Luo, J., Xie, S.R., Peng, Y., et al., 2020. Development of an unmanned surface vehicle for the emergency response mission of the 'Sanchi' oil tanker collision and explosion accident. Appl. Sci. 10, 2704. https://doi.org/10.3390/app10082704
- Porathe, T., 2019. Maritime Autonomous Surface Ships (MASS) and the COLREGS: do we need quantified rules or is "the ordinary practice of seamen" specific enough? International Journal on Marine Navigation and Safety of Sea Transportation 13 (3), 511-517. https://doi.org/10.12716/1001.13.03.04
- Svec, P., Thakur, A., Raboin, E., Shah, B.C., Gupta, S.K., 2014. Target following with motion prediction for unmanned surface vehicle operating in cluttered environments. Aut. Robots 36 (4), 383-405. https://doi.org/10.1007/s10514-013-9370-z
- Song, L.F., Su, Y.R., Dong, Z.P., 2018. A two-level dynamic obstacle avoidance algorithm for unmanned surface vehicles. Ocean. Eng. 170, 351-360. https://doi.org/10.1016/j.oceaneng.2018.10.008
- Savvaris, A., Niu, H., Oh, H., Tsourdos, A., 2014. Development of collision avoidance algorithms for the C-enduro USV. IFAC Proceeding 47, 12174-12181.
- Shen, H.Q., Hashimoto, H., Matsuda, A., et al., 2019. Automatic collision avoidance of multiple ships based on deep Q-learning. Appl. Ocean Res. 86, 268-288. https://doi.org/10.1016/j.apor.2019.02.020
- Szlapczynski, R., Szlapczynska, J., 2017. Review of ship safety domains: models and applications. Ocean. Eng. 145, 277-289. https://doi.org/10.1016/j.oceaneng.2017.09.020
- Thompson, F., Guihen, D., 2019. Review of mission planning for autonomous marine vehicle fleets. J. Field Robot. 36 (2), 333-354. https://doi.org/10.1002/rob.21819
- Tan, G.G., Jin, Z., Zhuang, J.Y., Wan, L., Sun, H.B., Sun, Z.Y., 2020. Fast marching square method based intelligent navigation of the unmanned surface vehicle swarm in restricted waters. Appl. Ocean Res. 95, 102018. https://doi.org/10.1016/j.apor.2019.102018
- Wang, H.J., Guo, F., Yao, H.F., He, S.S., Xu, X., 2019. Collision avoidance planning method of USV based on improved ant colony optimization algorithm. IEEE Access 7, 52964-52975. https://doi.org/10.1109/access.2019.2907783
- Woo, J.H., Kim, N.W., 2020. Collision avoidance for an unmanned surface vehicle using deep reinforcement learning. Ocean. Eng. 199, 107001. https://doi.org/10.1016/j.oceaneng.2020.107001
- Wang, N., 2010. An intelligent spatial collision risk based on the quaternion ship domain. J. Navig. 63, 733-749. https://doi.org/10.1017/S0373463310000202
- Wang, N., 2013. A novel analytical framework for dynamic quaternion ship domains. J. Navig. 66, 265-281. https://doi.org/10.1017/S0373463312000483
- Wang, Y.L., Yu, X.M., Liang, X., Li, B.A., 2018. A COLREGs-based obstacle avoidance approach for unmanned surface vehicles. Ocean. Eng. 169, 110-124. https://doi.org/10.1016/j.oceaneng.2018.09.012
- Wang, T.F., Yan, X.P., Wang, Y., Wu, Q., 2017. Ship domain model for multi-ship collision avoidance decision-making with COLREGs based on artificial potential field. International Journal on Marine Navigation and Safety of Sea Transportation 11, 85-92. https://doi.org/10.12716/1001.11.01.09
- Xie, S., Chu, X., Zheng, M., Liu, C., 2020. A composite learning method for multi-ship collision avoidance based on reinforcement learning and inverse control. Neurocomputing. Accessed on August 10. https://doi.org/10.1016/j.neucom.2020.05.089 [Online].
- Xu, W., Hu, J.Q., Yin, J.C., et al., 2016. Ship Automatic Collision Avoidance by Altering Course Based on Ship Dynamic Domain. IEEE Trustcom BigDataSE ISPA, Tianjin, China.
- Xu, X., Geng, X., Wen, Y., 2016. Modeling of ship collision risk index based on complex plane and its realization. International Journal on Marine Navigation and Safety of Sea Transportation 10, 251-256. https://doi.org/10.12716/1001.10.02.07
- Zereik, E., Bibuli, M., Miskovic, N., Ridao, P., Pascoal, A., 2018. Challenges and future trends in marine robotics. Annu. Rev. Contr. 46, 350-368. https://doi.org/10.1016/j.arcontrol.2018.10.002
- Zhang, X., Wang, C., Liu, Y., Chen, X., 2019. Decision-making for the autonomous navigation of maritime autonomous surface ships based on scene division and deep reinforcement learning. Sensors 19, 4055. https://doi.org/10.3390/s19184055
- Zhang, Y., Qu, D., Ke, J., Li, X., 2017. Dynamic obstacle avoidance for USV based on velocity obstacle and dynamic window method. J. Shanghai Univ. (Engl. Ed.) 23, 1-16.
- Zhou, J., Wang, C.X., Zhang, A.M., 2020. A COLREGs-based dynamic navigation safety domain for unmanned surface vehicles: a case study of Dolphin-I. J. Mar. Sci. Eng. 8, 264. https://doi.org/10.3390/jmse8040264
- Zhao, Y.X., Li, W., Shi, P., 2016. A real-time collision avoidance learning system for Unmanned Surface Vessels. Neurocomputing 182, 255-266. https://doi.org/10.1016/j.neucom.2015.12.028
- Zhen, R., Riveiro, M., Jin, Y.X., 2017. A novel analytic framework of real-time multivessel collision risk assessment for maritime traffic surveillance. Ocean. Eng. 145, 492-501. https://doi.org/10.1016/j.oceaneng.2017.09.015
- Zhou, X.Y., Huang, J.J., Wang, F.W., Wu, Z.L., Liu, Z.J., 2019. A study of the application barriers to the use of autonomous ships posed by the good seamanship requirement of COLREGs. J. Navig. 72, 1-16. https://doi.org/10.1017/s0373463318000656