References
- Ahmad, N. (2021), "Force-based seismic design of steel haunch retrofit for RC frames", Earthq. Struct., 20(2), 133-148. http://dx.doi.org/10.12989/eas.2021.20.2.133.
- Al-Osta M.A., Khan, M.I., Bahraq, A.A. and Xu, S.Y. (2020), "Application of ultra-high performance fiber reinforced concrete for retrofitting the damaged exterior reinforced concrete beam-column joints", Earthq. Struct., 19(5), 361-377. https://doi.org/10.12989/eas.2020.19.5.361
- Ang, A.H.S. and De Leon, D. (2005), "Modelling and analysis of uncertainties for risk-informed decisions in infrastructures engineering", Struct. Infrastruct. Eng., 1(1), 19-31. https://doi.org/10.1080/15732470412331289350.
- Ang, A.H.S. and Tang, W. (2007), Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering, John Wiley and Sons.
- Ang, A.H.S. and Tang, W. (1984), Probability Concepts in Engineering Planning and Design, John Wiley and Sons.
- ASCE (2010), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10. Reston, American Society of Civil Engineers.
- Beigi, H.A., Christopoulos, C., Sullivan, T.J. and Calvi, G. M. (2016), "Cost benefit analysis of buildings retrofitted using GIB systems", Earthq. Spectra, 32(2), https://doi.org/10.1193%2F110914eqs185m. https://doi.org/10.1193%2F110914eqs185m
- Croce, P., Landi, F. and Formichi, P. (2019), "Probabilistic seismic assessment of existing masonry buildings", Building., 9(12), 237, https://doi.org/10.3390/buildings9120237.
- Cui, W. and Blockley, D.I. (1991), "On the bounds for structural system reliability", Struct. Safety 9(4), 247-259. https://doi.org/10.1016/0167-4730(91)90047-D.
- Darbhanzi, A., Marefat, M.S., Khanmohammadi, M., Moradimanesh, A. and Zare, H. (2018), Earthq. Struct., 14(5), 449-458. https://doi.org/10.12989/eas.2018.14.5.449
- De Leon, D. and Ismael, E. (2021). "Comparison of retrofit alternatives for a school under seismic hazard including risk and reliability concepts", Civil Eng. Environ. Syst., https://doi.org/10.1080/10286608.2021.1977798
- Esteva, L., Diaz-Lopez, O., Garcia-Perez, J., Sierra, G. and Ismael, E. (2002), "Life-cycle optimization in the establishment of performance-acceptance parameters for seismic design", Struct. Safety, 24(2-4), 187-204. https://doi.org/10.1016/S0167-4730(02)00024-3.
- Federal Emergency Management Agency (FEMA) (2006), Next-Generation Performance-Based Seismic Design Guidelines, Program Plan for New and Existing Buildings. Developed by the Applied Research Council for the Federal Emergency Management Agency, Report No. FEMA 445. Washington, D.C.
- D'Ayala, D. and Vatteri, A.P. (2021), "Classification and seismic fragility assessment of confined masonry school buildings", Bull. Earthq. Eng., 19, 2213-2263 https://doi.org/10.1007/s10518-021-01061-913
- Gobierno de la Ciudad de Mexico (2017), Normas Tecnicas Complementarias, Reglamento de Construcciones para la Ciudad de Mexico. Mexico.
- Halahla, A.M., Rahman, M.K., Al-Gadhib, A.H. and Al-Osta, M.A. and Baluch, M.H. (2019), "Experimental investigations and FE simulation of exterior BCJs retrofitted with CFRP fabric", Earthq. Struct., 17(4), 337-354. http://dx.doi.org/10.12989/eas.2019.17.4.337
- Hwang, S.H., Kim, S. and Yang, K.H. (2020), "In-plane seismic performance of masonry wall retrofitted with prestressed steel-bar truss", Earthq. Struct., 19(6), 459-469. http://dx.doi.org/10.12989/eas.2020.19.6.459.
- Institute of Engineering (2017), Ground Motion Parameters of the September 19, 2017 Puebla Morelos Earthquake (Mw 7.1). Preliminar Report. Universidad Nacional Autonoma de Mexico.
- Inegi, & SEP. (2014), Censo de escuelas, maestros y alumnos de educacion basica y especial. Resultados del CEMABE 2013.
- Instituto Nacional de la Infraestructura Fisica Educativa (INIFED) (2016), Guia para elaborar o actualizar el Programa Escolar de Proteccion Civil. Recuperado de http://www.seducoahuila.gob.mx/proteccioncivilescolar/assets/guia-programa- escolar-de-proteccion-civil.pdf.
- Izzuddin, B.A., Karayannis, C.G. and Elnashai, A.S. (1994), "Advanced nonlinear formulation for reinforced concrete beam-columns", Struct. Eng., 120(10), 2913-2934. http://doi.org/10.1061/(asce)07339445(1994)120:10(2913).
- Jaimes M. A. and Nino M. (2017) Cost-benefit analysis to assess seismic mitigation options in Mexican public school buildings. Bull Earthquake Eng. 15(9), pp 3919-3942. http://doi.org/10.1007/s10518-017-0119-5.
- JCSS (2001), Probabilistic Model Code: Part 1 - Basis of Design, Joint Committee of Structural Safety.
- Kalogeropoulos, G.I., Tsonos, A.D.G., Konstantinidis, D. and Iakovidis, P.E. (2019), "Earthquake-resistant rehabilitation of existing RC structures using high-strength steel fiber-reinforced concrete jackets", Earthq. Struct., 17(1), 115-129, http://dx.doi.org/10.12989/eas.2019.17.1.115.
- Kalogeropoulos, G.I. and Tsonos A.D.G. (2019), "Improvement of the cyclic response of RC columns with inadequate lap splices-Experimental and analytical investigation", Earthq. Struct., 16(3), 279-293. http://dx.doi.org/10.12989/eas.2019.16.3.279.
- Kalogeropoulos, G.I. and Tsonos, A.G. (2014), "Effectiveness of R/C jacketing of substandard R/C columns with short lap splices", Struct. Monit. Maint., 1(3), 273-292. https://doi.org/10.12989/SMM.2014.1.3.273.
- Karayannis, C.G., Izzuddin, B.A. and Elnashai, A.S. (1994), "Application of adaptive analysis to Reinforced concrete frames", J. Struct. Eng., 120(10), 2935-2957, http://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2935)
- Karayannis, C.G. and Golias, E. (2018), "Full scale tests of RC joints with minor to moderate seismic damage repaired using CFRP sheets", Earthq. Struct., 15(6), 617-627. https://doi.org/10.12989/EAS.2018.15.6.617
- Karayannis, C.G. and Golias, E. (2021), "Strengthening of deficient RC joints with diagonally placed external C-FRP ropes", Earthq. Struct., 20(1), 123-132. http://dx.doi.org/10.12989/eas.2021.20.1.123
- Maio, A., Estevao, J.M.C., Ferreira, T.M. and Vicente, R. (2020), "Cost-benefit analysis of traditional seismic retrofitting strategies integrated in the renovation of stone masonry buildings", Eng. Struct., 206, http://doi.org/10.1016/j.engstruct.2019.110050.
- Ahmad, N. and Ali, Q. (2017), "Displacement-based seismic assessment of masonry buildings for global and local failure mechanisms", Cogent Eng., 4(1), 1414576. http://doi.org/10.1080/23311916.2017.1414576.
- Niasar, A.N., Alaee, F.J. and Zamani, S.M. (2020), "Parametric study on the lateral strength of URM wall, retrofitted using ECC mortar", Earthq. Struct., 18(4), 451-466. http://dx.doi.org/10.12989/eas.2020.18.4.451.
- O'Reilly, G.J., Perrone, D., Fox, M., Monteiro, R. and Filiatrault, A. (2018), "Seismic assessment and loss estimation of existing school buildings in Italy", Eng. Struct., 168. 142-162. http://doi.org/10.1016/j.engstruct.2018.04.056
- Rosenblueth, E. (1986), "Optimum reliabilities and optimum design", Struct. Safety. 3(2), 69-83. https://doi.org/10.1016/0167-4730(86)90009-3.
- Rosenblueth, E. (1987), "What should we do with structural reliabilities? Reliability and risk analysis in civil engineering", Procs. of ICASP 5, Vancouver, 24-34.
- Sardari, F., Dehkordi, M.R., Eghbali, M. and Samadian, D. (2020), "Practical seismic retrofit strategy based on reliability and resiliency analysis for typical existing steel school buildings in Iran", Int. J. Disaster Risk Reduct., 51, https://doi.org/10.1016/j.ijdrr.2020.101890
- Seaman, J., Leivesley, S. and Hogg, C. (1984), "Epidemiologia de Desastres Naturales, Edit. Harla, Organizacion Panamericana de la Salud, 161.
- Sorensen, J.D. and Thoft-Christensen P. (1987)," Integrated reliability-based optimal design of structures. Reliability and optimization of structural systems", Procs. 1st. IFIP WG 7.5 Working Conference, Denmark.
- Srechai, J., Leelataviwat, S., Wongkaew, A. and Lukkunaprasit, P. (2017), "Experimental and analytical evaluation of a low-cost seismic retrofitting method for masonry-infilled non-ductile RC frames", Earthq. Struct., 12(6), pp. 699-712. http://dx.doi.org/10.12989/eas.2017.12.6.699.
- Straub, D. and Faber, M.H. (2005), "Risk based inspection planning for structural systems", Struct. Safety, 27(4), 335-355. https://doi.org/10.1016/j.strusafe.2005.04.001.
- Thoft-Christensen, P. (1988), "Application of optimization methods in structural systems reliability theory", Lecture Notes in Control and Information Sciences, Springer, Berlin, Heidelberg.
- Tena, A. (2007), Analisis de estructuras con metodos matriciales. Limusa, Mexico.
- Tsonos, A.G. (2014), "An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method", Struct. Monit. Maint., 1(3), 323-338. https://doi.org/10.12989/SMM.2014.1.3.323.
- Tsonos, A.D.G., Kalogeropoulos, G., Iakovidis, P. and Konstantinidis, D. (2017), "Seismic retrofitting of pre-1970 RC bridge columns using innovative jackets", J. Struct. Eng., 8(2), 133-147. https://doi.org/10.1504/IJSTRUCTE.2017.084631.
- Ventura, C.E., Bebamzadeh, A., Fairhurst, M., Taylor, G. Finn, W.D.L. (2015), "Performance-based retrofit of school buildings in British Columbia, Canada: An update", Second ATC & SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. 741-753. https://doi.org/10.1061/9780784479728.061.
- Yang, M. and Zhang, C. (2019), "Comparative study on retrofitting strategies for residential buildings after earthquakes", Earthq. Struct., 16(4), 375-389. https://doi.org/10.12989/eas.2019.16.4.375.
- Wen, Y.K. (1976), "Method for random vibration of hysteretic systems," J. Eng. Mech. Div., ASCE, 102, 150-154.