DOI QR코드

DOI QR Code

Hormonal Study to Induce Direct Organ Differentiation of Kalanchoe pinnata by Tissue Culture

조직배양으로 Kalanchoe pinnata의 직접기관분화를 유도하기 위한 호르몬 연구

  • 김동균 (신라대학교 생명과학과)
  • Received : 2021.09.29
  • Accepted : 2021.10.25
  • Published : 2021.11.30

Abstract

Plant cells have a totipotencial capacity, the ability of each cell to produce a new complete individual through development. By applying this, several technologies are being developed for widespread application of somatic embryogenesis by processing hormones in vitro as a method of propagation of plants. In order to use this technology, in Kalanchoe pinnata, a plant capable of asexual reproduction with more regular cell division, kinetin belonging to cytokinin and picloram among hormones belonging to auxin were added in combination and treated for 8 weeks, and then the typical performance was evaluated. As a result of our experiment, the rooting effect in leaf slices showed a 70% incidence rate at a picloram concentration of 0.1 mg/L. It has been proven that a concentration difference of 1:5-1:10 in the ratio of kinetin and picloram is effective. It is the experimental result that the effect of auxin is essential for the development of Kalanchoe roots. As for the effect of shooting, the incidence rate was 60% at the picloram concentration of 0.5 mg/L. The kinetin concentration from 0.5 and 1.0 mg/L and has a significant effect on development. It has been proven that the ratio of kinetin to picloram is effective with a concentration difference of 1:1-1:2. These results show that the combination of cytokinin and auxin is crucially important for shooting. It is thought that it can be the basis of a technology for inducing mass proliferation in vitro by inducing direct organogenesis with a combination of hormones.

식물 세포는 각 세포가 발생을 통해 새로운 완전한 개체를 생산하는 전형성능이 있다. 이것을 응용하여 식물의 증식 방법으로 기내에서 호르몬을 처리하여 체세포 배 발생의 광범위한 적용으로 여러 기술이 발전하고 있다. 이 기술을 이용하기 위해서 보다 규칙적인 세포 분열을 하는 무성생식이 가능한 식물인 Kalanchoe pinnata 에 cytokinin에 속하는 kinetin과 auxin에 속하는 호르몬들 중 picloram을 서로 조합하여 첨가한 뒤 8주 동안 처리한 후 전형성능을 실험하였다. 우리의 실험 결과로 잎 절편에서 발근 효과로는 picloram 농도가 0.1 mg/L에서 70%의 발생율을 보였다. kinetin과 picloram의 비율이 1:5-1:10의 농도차이가 효과적이라는 것이 입증 되었다. auxin의 효과가 Kalanchoe 뿌리 발생에 필수적이라는 실험 결과이다. 경엽부 발생 효과로는 picloram 농도가 0.5 mg/L에서 60%의 발생율을 보였다. kinetin 농도는 0.5 - 1.0 mg/L이며 발생에 중요한 영향을 준다. kinetin과 picloram의 비율이 1:1-1:2의 농도 차이가 효과적이라는 것이 입증 되었다. cytokinin과 auxin의 조합이 결정적으로 경엽부 발생에 중요하다는 것을 보여 주는 결과이다. 호르몬의 조합으로 직접기관형성을 유도하여 기내에서 대량 증식을 유도하는 기술의 기초가 될 수 있다고 사료된다.

Keywords

References

  1. Ikeuchi, M., Ogawa, Y., and Iwase, A., Sugimoto, K., Plant regeneration: cellular origins and molecular mechanisms. Development, 143, 1442-1451, 2016. https://doi.org/10.1242/dev.134668
  2. Horstman A, Bemer M., and Boutilier K., A transcriptional view on somatic embryogenesis. Regeneration,4:201-216, 2017. https://doi.org/10.1002/reg2.91
  3. Krikorian, A. D., and Simola, L. K., Totipotency, somatic embryogenesis, and Harry Waris. Physiologia Plantarum,105, 348-355, 1999.
  4. Guha, S., and Maheshwari, S. C., Development of embryoids from pollen grains of Datura in vitro. Phytomorphology, 17,454-461,1967.
  5. Arnold S., Sabala I., Bozhkov P., Dyachok J., and Filonova L., Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69: 233-249, 2002. https://doi.org/10.1023/A:1015673200621
  6. Feher, A., Somatic embryogenesis-stress induced remodeling of plant cell fate. BBA Gene Regulation Mechanisms, 1849, 385-402, 2015.
  7. Jung Y, Chung Y, and Kim D,, Screening of Genes Which are able to Affect Kalanchoe Vegetative Reproduction. Journal of Life Science 21(6) 865~874, 2011. https://doi.org/10.5352/JLS.2011.21.6.865
  8. Miguel, C." and Marum, L., An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. Journal of Experimental Botany, 62, 3713-3725, 2011. https://doi.org/10.1093/jxb/err155
  9. Williams, E. G. and Maheswaran, G., Somatic embryogenesis - factors influencing coordinated behavior of cells as an embryogenic group. Annals of Botany, 57, 443-462,1986. https://doi.org/10.1093/oxfordjournals.aob.a087127
  10. Buchheim J.A., Colnurn S.M., and Ranch J.P., Maturation of soybean somatic embryos and the transition to plant growth. Plant Physiology. 89:768-775, 1989. https://doi.org/10.1104/pp.89.3.768
  11. Garces HMP, Connie EM, Champagne B, Townsley T, Park S, Malho R, Pedroso MC, Harada JJ,and Sinha, NR., Evolution of asexual reproduction in leaves of the genus Kalanchoe. PNAS. 104: 15578-15583, 2007. https://doi.org/10.1073/pnas.0704105104
  12. Baldwin, J..T Jr Kalanchoe: The Genus and its Chromosomes. American Journal of Botany. 25: 572-579, 1938. https://doi.org/10.2307/2436516
  13. Park,J., Kim,J.S. and Kim,D., The change of somatic cell embryogenesis in Kalanchoe pinnata because of agar concentration in stimulating root stress. J Plant Biotechnol 44:320-324, 2017. https://doi.org/10.5010/JPB.2017.44.3.320
  14. Kim, D., Overexpression of the Metal Transport Protein1 gene (MTP1) in Arabidopsis Increased tolerance by expression site, The Journal of the Convergence on Culture Technology, Vol.5(3), pp.327-332, 2019 https://doi.org/10.17703/JCCT.2019.5.3.327
  15. Koltunow A.M. and Grossniklaus U., A Developmental Perspective. Annu. Rev. Plant Biol, 54, 547-574, 2003. https://doi.org/10.1146/annurev.arplant.54.110901.160842