DOI QR코드

DOI QR Code

Cu-Xwt%Sn 합금 위에 선택적 산화막 SnO2 형성 유·무에 따른 내변색 및 내부식특성 평가

Evaluation of Anti-tarnishing and Corrosion Resistance of Cu-Xwt%Sn Alloy before and After Selective SnO2 Oxide Film according to Potentiostatic Electrolysis Treatment

  • 최지웅 (부산대학교 나노메카트로닉스공학과) ;
  • 김혜성 (부산대학교 나노메카트로닉스공학과)
  • Choi, Ji Woong (Dept. of Nanomechatronics Engineering, Pusan National University) ;
  • Kim, Hye Sung (Dept. of Nanomechatronics Engineering, Pusan National University)
  • 투고 : 2021.09.16
  • 심사 : 2021.10.07
  • 발행 : 2021.11.30

초록

In this study, anti-tarnishing and corrosion characteristics of a single 𝛽1' and Bangjja Yugi alloy in the Cl- ion environment before and after potentiostatic electrolysis treatment were compared. Stable and uniform SnO2 oxide film with several nanometer thickness is formed after potentiostatic electrolysis treatment. In the case of Bangjja Yugi prior to potentiostatic electrolysis (PE) treatment for exposure in Cl- environment, tarnishing occurs rapidly within 0.5hr, whereas PE treated Bangjja Yugi indicates stable surface without tarnishing up to 3hr. Especially, it is noticeable that anti-tarnishing and corrosion characteristic of PE treated single 𝛽1', which were significantly improved by 3 times and 15 times, respectively, compared to conventional Bangja Yugi.

키워드

과제정보

본 연구는 연구재단 지원 NRF-2017M3C1B5018722에 의해 수행되었습니다.

참고문헌

  1. J. S. Lee, I. H. Jeon, and J. S. Park : Journal of Conservation Service, 27 (2011) 421-430.
  2. H. Fujiwara, T. Nishimoto, H. Miyamoto, and K. Ameyama : PRICM-8 (2013) 24550.
  3. Y. Y. and Kim, H. S. Kim : Metals and Materials International 25 (2019) 465-472. https://doi.org/10.1007/s12540-018-00231-w
  4. C. Dutkiewicz and H. Fallowfield : J. Appl. Microbiol. 85 (1998) 597-602. https://doi.org/10.1046/j.1365-2672.1998.853567.x
  5. Y. Pang, J. A. Patterson, and T. J. Applegate : Poult. Sci 88 (2009) 586-592. https://doi.org/10.3382/ps.2008-00243
  6. S. Subhadarshini, R. Singh, D. K. Goswami, A. K. Das, and N. Ch. Das : Langmuir 35(52) (2019) 17166-17176. https://doi.org/10.1021/acs.langmuir.9b03024
  7. M. E. Villanueva, A. M. del Rosario Diez, J. A. Gonzalez, C. J. Perez, M. Orrego, L. Piehl, S. Teves, G. J. Copello : ACS Applied Materials & Interfaces 8 (25) (2016) 16280-16288. https://doi.org/10.1021/acsami.6b02955
  8. J. Muller, B. Laik, and I. Guillot : Corrosion Science, 77 (2013) 46-51. https://doi.org/10.1016/j.corsci.2013.07.025
  9. L. C. Tsao and C. W. Chen : 63 (2012) 393-398. https://doi.org/10.1016/j.corsci.2012.06.015
  10. C. S. Lee : Paper of MS degree in Pusan National Univeristy (2020) 25-32.
  11. T. Wang, J. Wang, and Y. Wu : Corrosion Science, 97 (2015) 89-99. https://doi.org/10.1016/j.corsci.2015.04.018
  12. F. Ammeloot, C. Fiaud, and E. M. M. Sutter : Electrochmica Acta 44 (1999) 2549-2558. https://doi.org/10.1016/S0013-4686(98)00391-0
  13. L. Robbiola T. T. M. Tran, P. Dubot, O. Majerus, and K. Rahmouni : Corrosion science 50 (2008) 2205-2215. https://doi.org/10.1016/j.corsci.2008.06.003
  14. M. J. Hutchison and J. R. Scully : Electrochimica Acta, 283 (2018) 806-817. https://doi.org/10.1016/j.electacta.2018.06.125