DOI QR코드

DOI QR Code

Laboratory chamber test for prediction of hazardous ground conditions ahead of a TBM tunnel face using electrical resistivity survey

전기비저항 탐사 기반 TBM 터널 굴진면 전방 위험 지반 예측을 위한 실내 토조실험 연구

  • Lee, JunHo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kang, Minkyu (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Hyobum (Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University) ;
  • Choi, Hangseok (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 이준호 (고려대학교 건축사회환경공학부) ;
  • 강민규 (고려대학교 건축사회환경공학부) ;
  • 이효범 (고려대학교 미래건설환경융합연구소) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2021.10.19
  • Accepted : 2021.11.03
  • Published : 2021.11.30

Abstract

Predicting hazardous ground conditions ahead of a TBM (Tunnel Boring Machine) tunnel face is essential for efficient and stable TBM advance. Although there have been several studies on the electrical resistivity survey method for TBM tunnelling, sufficient experimental data considering TBM advance were not established yet. Therefore, in this study, the laboratory-scale model experiments for simulating TBM excavation were carried out to analyze the applicability of an electrical resistivity survey for predicting hazardous ground conditions ahead of a TBM tunnel face. The trend of electrical resistivity during TBM advance was experimentally evaluated under various hazardous ground conditions (fault zone, seawater intruded zone, soil to rock transition zone, and rock to soil transition zone) ahead of a tunnel face. In the course of the experiments, a scale-down rock ground was provided using granite blocks to simulate the rock TBM tunnelling. Based on the experimental data, the electrical resistivity tends to decrease as the tunnel approaches the fault zone. While the seawater intruded zone follows a similar trend with the fault zone, the resistivity value of the seawater intrude zone decreased significantly compared to that of the fault zone. In case of the soil-to-rock transition zone, the electrical resistivity increases as the TBM approaches the rock with relatively high electrical resistivity. Conversely, in case of the rock-to-soil transition zone, the opposite trend was observed. That is, electrical resistivity decreases as the tunnel face approaches the rock with relatively low electrical resistivity. The experiment results represent that hazardous ground conditions (fault zone, seawater intruded zone, soil-to-rock transition zone, rock-to-soil transition zone) can be efficiently predicted by utilizing an electrical resistivity survey during TBM tunnelling.

터널 굴진면 전방 위험 지반 예측은 TBM (Tunnel Boring Machine) 굴진 성능 및 안정성 확보에 필수적이다. 국내·외에서 굴진면 전방 예측을 위한 전기비저항 탐사법에 대한 연구가 다수 이루어졌으나, TBM 터널 굴진을 고려한 전기비저항 탐사의 실내 실험 모사가 어렵기에 이와 관련된 실험 연구가 매우 부족한 실정이다. 따라서 본 연구에서는 전기비저항 탐사법의 터널 전방 위험 지반 예측 적용성을 분석하기 위한 TBM 굴진을 모사한 실내 축소 모형 실험을 수행하였다. 터널 굴진면 전방의 단층 파쇄대, 해수 침수대, 토사-암반 변화구간, 암반-토사 변화구간을 축소 모사하여, 굴진 중 전기비저항의 변화를 측정하였다. 본 연구에서는 실제 시공 조건을 재현하기 위해 화강암 블록을 사용하여 모형 지반을 모사하였다. 실험 결과, 터널이 굴진하면서 단층 파쇄대에 근접할수록 전기비저항이 감소하였으며, 해수 침수대도 동일한 경향을 보였으나, 단층 파쇄대와 비교하여 측정된 전기비저항이 크게 감소하였다. 토사-암반 변화구간의 경우, 전기비저항이 상대적으로 높은 암반에 터널 굴진면이 다가갈수록 전기비저항이 증가하는 양상을 보였다. 이와 반대로 암반-토사 변화구간의 경우, 전기비저항이 낮은 토사 지반에 굴진면이 근접할수록 전기비저항이 감소하였다. 실험 결과를 통해 전기비저항 탐사 굴진면 전방 위험 지반(단층 파쇄대, 해수 침수대, 토사-암반 변화구간, 암반-토사 변화구간)의 예측이 가능하다고 판단된다.

Keywords

Acknowledgement

이 연구는 국토교통부/국토교통과학기술진흥원이 시행하고 한국도로공사가 총괄하는 "스마트건설기술개발 국가R&D사업(과제번호21SMIP-A158708-02)"의 지원으로 수행하였습니다.

References

  1. Archie, G.E. (1942), "The electrical resistivity log as an aid in determining some reservoir characteristics", Transactions of the AIME, Vol. 146, No. 1, pp. 54-62. https://doi.org/10.2118/942054-G
  2. Bhattacharya, P.K., Patra, H.P. (1968), Direct Current Geoelectric Sounding: Principles and Interpretation, Elsevier, Amsterdam, pp. 135.
  3. Broere, W. (2016), "Urban underground space: solving the problems of today's cities", Tunnelling and Underground Space Technology, Vol. 55, pp. 245-248. https://doi.org/10.1016/j.tust.2015.11.012
  4. Chen, G., Wu, Z.Z., Wang, F.J., Ma, Y.L. (2011), "Study on the application of a comprehensive technique for geological prediction in tunneling", Environmental Earth Sciences, Vol. 62, No. 8, pp. 1667-1671. https://doi.org/10.1007/s12665-010-0651-y
  5. Cho, G.C., Choi, J.S., Lee, G.H., Lee, J.K. (2005), "Prediction of ground-condition ahead of tunnel face using electric resistivity - analytical study", Proceedings of the 31st ITA-AITES World Tunnel Congress, Istanbul, Turkey, pp. 1187-1194.
  6. Delisio, A., Zhao, J., Einstein, H.H. (2013), "Analysis and prediction of TBM performance in blocky rock conditions at the Lotschberg Base Tunnel", Tunnelling and Underground Space Technology, Vol. 33, pp. 131-142. https://doi.org/10.1016/j.tust.2012.06.015
  7. Dickmann, T., Sander, B.K. (1996), "Drivage-concurrent tunnel seismic prediction (TSP)", Felsbau, Vol. 14, No. 6, pp. 406-411.
  8. Grodner, M. (2001), "Delineation of rockburst fractures with ground penetrating radar in the Witwatersrand basin, South Africa", International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 6, pp. 885-891. https://doi.org/10.1016/S1365-1609(01)00054-5
  9. Jeong, H., Zhang, N., Jeon, S. (2018), "Review of technical issues for shield TBM tunneling in difficult grounds", Tunnel and Underground Space, Vol. 28, No. 1, pp. 1-24. https://doi.org/10.7474/TUS.2018.28.1.001
  10. Kang, D., Lee, I.M., Jung, J.H., Kim, D. (2019), "Forward probing utilizing electrical resistivity and induced polarization for predicting soil and core-stoned ground ahead of TBM tunnel face", Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 3, pp. 323-345. https://doi.org/10.9711/KTAJ.2019.21.3.323
  11. Kaus, A., Boening, W. (2008), "BEAM - Geoelectrical Ahead Monitoring for TBM-Drives", Geomechanics and Tunnelling, Vol. 1, No. 5, pp. 442-449. https://doi.org/10.1002/geot.200800048
  12. Kim, J.H., Yoon, H.K., Jung, S.H., Lee, J.S. (2009), "Development and verification of 4-electrode resistivity probe", KSCE Journal of Civil and Environmental Engineering Research, Vol. 29, No. 3C, pp. 127-136.
  13. Lee, K.H., Park, J.H., Park, J., Lee, I.M. (2018), "A study on applicability of electrical resistivity survey in mechanized tunnelling job-sites", Journal of the Korean Geoenvironmental Society, Vol. 19, No. 3, pp. 35-45. https://doi.org/10.14481/JKGES.2018.19.3.35
  14. Li, S., Li, S., Zhang, Q., Xue, Y., Liu, B., Su, M., Wang, Z., Wang, S. (2010), Predicting geological hazards during tunnel construction", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 2, No. 3, pp. 232-242. https://doi.org/10.3724/sp.j.1235.2010.00232
  15. McDowell, P.W., Barker, R.D., Butcher, A.P., Culshaw, M.G., Jackson, P.D., McCann, D.M., Skipp, B.O., Matthews, S.L., Arthur, J.C.R. (2002), Geophysics in engineering investigations, London: CIRIA, Vol. 19, pp. 254.
  16. Park, J., Ryu, J., Choi, H., Lee, I.M. (2018), "Risky ground prediction ahead of mechanized tunnel face using electrical methods: laboratory tests", KSCE Journal of Civil Engineering, Vol. 22, No. 9, pp. 3663-3675. https://doi.org/10.1007/s12205-018-1357-z
  17. Park, S.G. (2004), "Physical property factors controlling the electrical resistivity of subsurface", Geophysics and Geophysical Exploration, Vol. 7, No. 2, pp. 130-135.
  18. Reynolds, J.M. (2011), An Introduction to Applied and Environmental Geophysics, John & Sons, New York, pp. 289-402.
  19. Ryu, J., Park, J., Lee, S.W., Lee, I.M., Kim, B.K. (2018), "Forward probing utilizing electrical resistivity and induced polarization for predicting mixed-ground ahead of TBM tunnel face", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 1, pp. 55-72. https://doi.org/10.9711/KTAJ.2018.20.1.055
  20. Santamarina, J.C., Klein, K.A., Fam, M.A. (2001), Soils and Waves, J. Wiley & Sons, New York, pp. 329-428.
  21. Takahashi, T., Kawase, T. (1990), "Analysis of apparent resistivity in a multi-layer earth structure", IEEE Transactions on Power Delivery, Vol. 5, No. 2, pp. 604-612. https://doi.org/10.1109/61.53062
  22. Yoon, Y., Jeong, H., Jeon, S. (2018), "Review of pre-grouting methods for shield TBM tunneling in difficult grounds", Tunnel and Underground Space, Vol. 28, No. 6, pp. 528-546. https://doi.org/10.7474/TUS.2018.28.6.528