DOI QR코드

DOI QR Code

Discrete element analysis for design modification of leveling blade on motor grader vehicle

모터 그레이더 평탄작업용 블레이드의 설계개선을 위한 개별요소법 해석

  • 송창헌 (한국생산기술연구원 건설기계기술센터) ;
  • 오주영 (한국생산기술연구원 건설기계기술센터) ;
  • 조정우 (한국생산기술연구원 건설기계기술센터) ;
  • 김문규 (한국생산기술연구원 건설기계기술센터) ;
  • 석정호 (네오시스템)
  • Received : 2021.09.11
  • Accepted : 2021.11.09
  • Published : 2021.11.30

Abstract

The blade of motor grader is used for scattering and leveling the aggregates on the foundation of road construction site. The paper performed a design improvement research of the blade part to enhance the working efficiency of motor graders. The scattering works of aggregates by blade driving were simulated by DEM (discrete element method) of a dynamic code. The four design parameters were selected and a specific leveling scenario for the simulation was determined. The nine blade models were numerically experimented, and the sensitivity of each factors was analyzed. Next, the design factors that influence a blade performance have been selected by ANOVA, and these key design factors were applied to the progressive quadratic response surface method (PQRSM). The optimum set of design factors of the blade was finally proposed.

모터 그레이더의 블레이드는 도로공사시 골재를 산포하고 평탄화하는 역할을 수행한다. 본 연구는 그레이더의 작업효율을 향상시키기 위하여 블레이드 부품의 설계개선 연구를 진행하였다. 블레이드와 골재 입자의 접촉, 절삭, 산포 과정을 모사하기 위하여 동해석 코드에 개별요소법을 도입하여 전산해석 모델을 수립하였다. 블레이드 설계인자를 4가지 선별한 후 작업 시나리오를 수립하였다. 실험계획의 직교배열을 통해 각 인자의 수준조합별 9개 모델에 대해 평탄화 작업에 대한 동해석을 수행하고, 각 설계인자의 영향도를 분석하였다. 이후 유의한 인자를 분산분석을 통해 선별하여 최적화기법으로 점진적 반응표면법을 적용하였다. 최종적으로 블레이드의 작업 효율성을 향상시킬 수 있도록 설계인자의 최적값을 제안하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 스마트건설기술연구사업, 도로실증을 통한 스마트 건설기술 개발 과제(3세부 디지털 기반 도로 건설장비 자동화 기술 개발) (20SMIP-A157130-01)의 지원으로 수행되었습니다. 이에 감사 드립니다.

References

  1. Carmen, D., Nastac, S. (2012), "Comparative analysis between operational performance of motor grader equipments", The Annals of Dunarea de Jos University of Galati, Fascicle XIV Mechanical Engineering, Vol. 17, No. 2, pp. 87-90.
  2. Caterpillar (2020), Systems operation testing and adjusting 120 Motor grader systems, Caterpillar, pp. 5.
  3. Galitskov, K.S., Nazarov, M.A., Lukyanov, A.S. (2020), "Studying the dynamics of the automatic control system for the elevation position of a motor grader blader with an alternative position sensor", Proceedings of the International Scientific Conference Interstroymeh, Samara, Russia, 012021.
  4. Heikkila, R., Jaakkola, M. (2002), "The efficiency of a 3-D blade control system in the construction of structure layers by road grader-automated design-build of road construction in Finland", Proceedings of the 19th ISARC 2002, Washington, USA, pp. 475-480.
  5. Kim, D., Park, D., Lee, J., Shin, S., Choi, J.H., Choi, B.L., Choi, D.H. (2014), "Optimal vehicle rear suspension through integration of analysis and design process", Transactions of the Korean Society of Automotive Engineers, Vol. 22, No. 4, pp. 72-81. https://doi.org/10.7467/KSAE.2014.22.4.072
  6. Kim, D.J., Oh, J.Y., Cho, J.W., Kim, J., Chung, J., Song, C. (2019), "Design study of impact performance of a DTH hammer using PQRSM and numerical simulation", Journal of Mechanical Science and Technology, Vol. 33, No. 11, pp. 5589-5602. https://doi.org/10.1007/s12206-019-1052-0
  7. Klets, D., Krasnokutsky, M., Hatsko, V., Barun, M. (2017), "Modeling of operation processes of a motor grader engine during work under unsteady load", Eastern-European Journal of Enterprise Technologies, Vol. 4, No. 7, pp. 45-50.
  8. Ko, H.B., Park, G.A., Son, K.S., Lee, J.K. (2005), New engineering of construction equipment, Goldenbell Ltd., pp. 463-469.
  9. Kononov, A.A., Kononov, A.D., Ivanov, S.A. (2019), "Information technologies of automation of motor grader control in the soil processing with changes of the capture angle of the blade", Proceedings of the International Science and Technology Conference "EastConf", Vladivostok, Russia, pp. 1-4.
  10. Lee, J.K., Bae, J.H., Chai, S., Hong, D. (2021), "External load estimation of motor grader blade using co-simulation analysis of discrete element method (DEM) and multibody dynamics (MBD)", Proceedings of the KSPE 2021 Spring Conference, Vol. 21, No. 5, pp. 255.
  11. Livermore Software Technology (2012), LS-DYNA keyword user's manual, Volume I, Version 971 R6.1.0Z.
  12. Park, C.H., Lee, Y.M., Choi, D.H. (2011), "Design optimization of an automotive vent valve using Kriging Models", Transactions of the Korean Society of Automotive Engineers, Vol. 19, No. 6, pp. 1-9.
  13. Park, K., Choi, D.H. (2004), "Optimal design of a heat sink using the sequential approximate optimization algorism", The Society of Air-Conditioning and Refrigerating Engineers of Korea, Vol. 16, No. 12, pp. 1156-1166.
  14. PIDOTECH Inc. (2015), PIAnO user's manual.
  15. Ruiying, Z., Xin, W. (2012), "Research on power adaptive control method for hydraulic motor grader based on Simulink/AMEsim", Applied Mechanics and Materials, Vol. 135-136, pp. 793-799. https://doi.org/10.4028/www.scientific.net/AMM.135-136.793
  16. Yukihisa, S. (2002), "Development of combined automatic blade control for snow-removing grader", Komatsu Technical Report, Vol. 48, No. 150, pp. 2-7.