Acknowledgement
This research was supported by the research project "Development of environmental simulator and advanced construction technologies over TRL6 extreme conditions" funded by the Korea Institute of Civil Engineering and Building Technology (KICT).
References
- Alzoubi, M.A., Nie-Rouquette, A. and Sasmito, A.P. (2018). "Conjugate heat transfer in artificial ground freezing using enthalpy-porosity method: Experiments and model validation", Int. J. Heat Mass Tran., 126(A), 740-752. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.059.
- Alzoubi, M.A., Madiseh, A., Hassani, F.P. and Sasmito, A.P. (2019), "Heat transfer analysis in artificial ground freezing under high seepage; Validation and heatlines visualization", Int. J. Therm. Sci., 139, 232-245. https://doi.org/10.1016/j.ijthermalsci.2019.02.005.
- Alzoubi, M.A., Xu, M., Hassani, F.P., Poncet, S. and Sasmito, A.P. (2020), "Artificial ground freezing: A review of thermal and hydraulic aspects", Tunn. Undergr. Sp. Tech., 104, 103534-1-18. https://doi.org/10.1016/j.tust.2020.103534.
- Andersland, O.B. and Ladanyi, B. (2004), Frozen Ground Engineering (2nd Edition), John and Wiley Sons, NY, USA.
- Chang, M., Mao, T.W. and Huang, R.C. (2016), "A study on the improvements of geotechnical properties of in-situ soils by grouting", Geomech. Eng., 10(4), 527-546. http://dx.doi.org/10.12989/gae.2016.10.4.527.
- Comsol Inc. (2021), Comsol Multiphysics User's Manual Ver. 5.6, Comsol Inc., Burlington, MA, USA.
- Coussy O. (2004), Poromechanics, John and Wiley Sons, New York, NY, USA.
- Frivik, P. and Comini, G. (1982), "Seepage and heat flow in soil freezing", J. Heat Transf., 104(2), 323-328. https://doi.org/10.1115/1.3245091.
- Hashemi, H.T. and Sliepcevich, C.M. (1973), "Effect of seepage stream on artificial soil freezing", J. Soil Mech. Found. Div., 99(3), 267-289. https://doi.org/10.1061/JSFEAQ.0001861.
- Go, G.H., Lee, J. and Kim, M. (2020), "Influencing factors on freezing characteristics of frost susceptible soil based on sensitivity analysis", J. Korean Geotech. Soc, 36(8), 49-60. https://doi.org/10.7843/kgs.2020.36.8.49.
- Huang, S., Guo, Y., Liu, Y., Ke, L., Liu, G. and Chen, C. (2018), "Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing", Appl. Therm. Eng., 135, 435-445. https://doi.org/10.1016/j.applthermaleng.2018.02.090.
- Jessberger, G.L. (1980), "Theory and application of ground freezing in civil engineering", Cold Reg. Sci. Technol., 3, 3-27. https://doi.org/10.1016/0165-232X(80)90003-8.
- Jin, H., Lee, J., Ryu, B.H. and Go, G.H. (2020), "Experimental and numerical study on hydro-thermal behaviour of artificial freezing system with water flow", J. Korean Geotech. Soc., 36(12), 17-25. https://doi.org/10.7843/kgs.2020.36.12.17.
- Jumikis, A.R. (1979), "Cryogenic texture and strength aspects of artificially frozen soils", Eng. Geol., 13, 125-135. https://doi.org/10.1016/0013-7952(79)90026-7.
- Lackner, R., Amon, A. and Lagger, H. (2005), "Artificial ground freezing of fully saturated soil: Thermal problem", J. Eng. Mech., 131(2), 211-220. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:2(211).
- Li, Z., Chen, J., Sugimoto, M. and Ge, H. (2019), "Numerical simulation model of artificial ground freezing for tunneling under seepage flow conditions", Tunn. Undergr. Sp. Tech., 92, 103035. https://doi.org/10.1016/j.tust.2019.103035.
- Luckner L., van Genuchten M.T. and Nielsen D.R. (1989), "A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface", Water Resour. Res., 25(10), 2187-2193. https://doi.org/10.1029/WR025i010p02187.
- Marwan, A., Zhou, M.M., Abdelrehim, M.Z. and Meschke, G. (2016), "Optimization of artificial ground freezing in tunneling in the presence of seepage flow", Comput. Geotech., 75, 112-125. https://doi.org/10.1016/j.compgeo.2016.01.004.
- Michalowski, R.L. and Zhe, M. (2006), "Frost heave modelling using porosity rate function", Int. J. Numer. Anal. Meth. Geomech., 30, 703-722. https://doi.org/10.1002/nag.497.
- Pimentel, E., Papakonstantinou, S. and Anagnostou, G. (2012a), "Numerical interpretation of temperature distributions from three ground freezing applications in urban tunnelling", Tunn. Undergr. Sp. Tech., 28, 57-59. https://doi.org/10.1016/j.tust.2011.09.005.
- Pimentel, E., Sres, A. and Anagnostou, G. (2012b), "Large-scale laboratory tests on artificial ground freezing under seepage-flow conditions", Geotechnique, 62(3), 227-241. https://doi.org/10.1680/geot.9.P.120.
- Quang, N.D. and Giao, P.H. (2014), "Improvement of soft clay at a site in the Mekong Delta by vacuum preloading", Geomech. Eng., 6(5), 419-436. http://dx.doi.org/10.12989/gae.2014.6.5.419.
- Shen, Y., Wang, Y., Zhao, X., Yang, G., Jia, H. and Rong, T. (2018), "The influence of temperature and moisture content on sandstone thermal conductivity from a case using the artificial ground freezing (AGF) method", Cold Reg. Sci. Technol., 155, 149-160. https://doi.org/10.1016/j.coldregions.2018.08.004.
- Shin, H., Kim. J. and Lee, J. (2018), "Effect of groundwater flow on ice-wall integrity", J. Korean Geotech. Soc., 34(11), 43-55. https://doi.org/10.7843/kgs.2018.34.11.43.
- Stander, W. (1967) Mathematische Ansatze zur Berechnung der Frostausbreitung in ruhendem Grundwasser im Vergleich zu Modelluntersuchungen fur verschiedene Gefrierrohranordnungen im Schactund Grundbau, Technical University Fridericiana, Institute for Soil Mechanics and Rock Mechanics, Karlsruhe, Germany.
- Taha, M.R., Alsharef, J.M.A., Khan, T.A., Aziz, M. and Gaber, M. (2018), "Compressive and tensile strength enhancement of soft soils using nanocarbons", Geomech. Eng., 16(5), 559-567. https://doi.org/10.12989/gae.2018.16.5.559.
- Takashi, T. (1969), "Influence of seepage stream on the joining of frozen zones in artificial soil freezing", Proceedings of International Conference on Effects of Temperature and Heat on Engineering Behavior of Soils, Washington, January.
- Tandel, Y.K., Solanki, C.H. and Desai, A.K. (2014), "Field behaviour geotextile reinforced sand column", Geomech. Eng., 6(2), 195-211. http://dx.doi.org/10.12989/gae.2014.6.2.195.
- Vitel, M., Rouabhi, A., Tijani, M. and Guerin, F. (2016), "Modeling heat and mass transfer during ground freezing subjected to high seepage velocities", Comput. Geotech., 73, 1-15. https://doi.org/10.1016/j.compgeo.2015.11.014.
- Wang, B., Rong, C.X., Lin, J., Cheng, H. and Cai, H.B. (2019), "Study on the formation law of the freezing temperature field of freezing shaft sinking under the action of large-flow-rate groundwater", Adv. Mater. Sci. Eng., 2019(1670820), 1-20. https://doi.org/10.1155/2019/1670820.
- Yu, W.B., Liu, W.B., Lai, Y.M., Chen, L. and Yi. X. (2014), "Nonlinear analysis of coupled temperature-seepage problem of warm oil pipe in permafrost regions of Northeast China", Appl. Therm. Eng., 70, 988-995. https://doi.org/10.1016/j.applthermaleng.2014.06.028.
- Zhou, M.M. and Meschke, G. (2013), "A three-phase thermos-hydro-mechanical finite element model for freezing soils", Int. J. Numer. Anal. Meth. Geomech., 37, 3173-3193. https://doi.org/10.1002/nag.2184.
- Zhou, J. and Tand, Y. (2018), "Experimental inference on dual-porosity aggravation of soft clay after freeze-thaw by fractal and probability analysis", Cold Reg. Sci. Technol., 153, 181-196. https://doi.org/10.1016/j.coldregions.2018.06.001.
- Zueter, A., Nie-Rouquette, A., Alzoubi, M.A. and Sasmito, A.P. (2020), "Thermal and hydraulic analysis of selective artificial ground freezing using air insulation: Experiment and modelling", Comput. Geotech., 120, 103416. https://doi.org/10.1016/j.compgeo.2019.103416.