DOI QR코드

DOI QR Code

An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials

  • Li, Xin (Department of Aeronautical Structure Engineering, Northwestern Polytechnical University) ;
  • Zhang, Chao (Department of Aeronautical Structure Engineering, Northwestern Polytechnical University) ;
  • Wu, Zhangming (Cardiff School of Engineering, Cardiff University)
  • 투고 : 2020.11.08
  • 심사 : 2021.09.25
  • 발행 : 2021.12.10

초록

With the continuous increase of computational capacity, more and more complex nonlinear elastoplastic constitutive models were developed to study the mechanical behavior of elastoplastic materials. These constitutive models generally contain a large amount of physical and phenomenological parameters, which often require a large amount of computational costs to determine. In this paper, an inverse parameter determination method is proposed to identify the constitutive parameters of elastoplastic materials, with the consideration of both strain rate effect and temperature effect. To carry out an efficient design, a hybrid optimization algorithm that combines the genetic algorithm and the Nelder-Mead simplex algorithm is proposed and developed. The proposed inverse method was employed to determine the parameters for an elasto-viscoplastic constitutive model and Johnson-cook model, which demonstrates the capability of this method in considering strain rate and temperature effect, simultaneously. This hybrid optimization algorithm shows a better accuracy and efficiency than using a single algorithm. Finally, the predictability analysis using partial experimental data is completed to further demonstrate the feasibility of the proposed method.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (Grant No. 11772267), the 111 Project (Grant No. BP0719007), and the Shaanxi Key Research and Development Program for International Cooperation and Exchanges (Grant No. 2019KW-020).

참고문헌

  1. Avril, S., Bonnet, M., Bretelle, A.S., Grediac, M., Hild, F., Ienny, P., Latourte, F., Lemosse, D., Pagano, S., Pagnacco, E. and Pierron, F. (2008), "Overview of identification methods of mechanical parameters based on full-field measurements", Exp. Mech., 48(4), 381-402. https://doi.org/10.1007/s11340-008-9148-y.
  2. Aydin, M.S., Gerlach, J., Kessler, L. and Tekkaya, A.E. (2011), "Yield locus evolution and constitutive parameter identification using plane strain tension and tensile tests", J. Mater. Proc. Technol., 211(12), 1957-1964. https://doi.org/10.1016/j.jmatprotec.2011.06.018.
  3. Aymen, N., Charfeddine, M. and Rachid, N. (2018), "Friction tuned mass damper optimization for structure under harmonic force excitation", Struct. Eng. Mech., 65(6), 761-769. https://doi.org/10.12989/sem.2018.65.6.761.
  4. Bouda, P., Langrand, B., Notta-Cuvier, D., Markiewicz, E. and Pierron, F. (2019), "A computational approach to design new tests for viscoplasticity characterization at high strain-rates", Comput. Mech., 64(6), 1639-1654. https://doi.org/10.1007/s00466-019-01742-y.
  5. Boyer, R. and Welsch, G. (1993), Materials Properties Handbook: Titanium Alloys, ASM International, State of Ohio, USA.
  6. Chaparro, B.M., Thuillier, S., Menezes, L.F., Manach, P. and Fernandes, J.V. (2008), "Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms", Comput. Mater. Sci., 44(2), 339-346. https://doi.org/10.1016/j.commatsci.2008.03.028.
  7. Cheng, W., Outeiro, J., Costes, J.P., M'Saoubi, R., Karaouni, H. and Astakhov, V. (2019), "A constitutive model for Ti6Al4V considering the state of stress and strain rate effects", Mech. Mater., 137, 103103. https://doi.org/10.1016/j.mechmat.2019.103103.
  8. Cooreman, S., Lecompte, D., Sol, H., Vantomme, J. and Debruyne, D. (2007), "Elasto-plastic material parameter identification by inverse methods: Calculation of the sensitivity matrix", Int. J. Solid. Struct., 44(13), 4329-4341. https://doi.org/10.1016/j.ijsolstr.2006.11.024.
  9. Dorogoy, A. and Rittel, D. (2009), "Determination of the Johnson-Cook material parameters using the SCS specimen", Exp. Mech., 49(6), 881-885. https://doi.org/10.1007/s11340-008-9201-x.
  10. Fu, J., Barlat, F., Kim, J. and Pierron, F. (2017), "Application of the virtual fields method to the identification of the homogeneous anisotropic hardening parameters for advanced high strength steels", Int. J. Plast., 93, 229-250. https://doi.org/10.1016/j.ijplas.2016.07.013.
  11. Giglio, M., Manes, A., Mapelli, C. and Mombelli, D. (2013), "Relation between Ductile Fracture Locus and Deformation of Phases in Ti-6Al-4V Alloy", ISIJ. Int., 53(12), 2250-2258. https://doi.org/10.2355/isijinternational.53.2250.
  12. Grediac, M. and Pierron, F. (2006), "Applying the virtual fields method to the identification of elasto-plastic constitutive parameters", Int. J. Plast., 22(4), 602-627. https://doi.org/10.1016/j.ijplas.2005.04.007.
  13. Hammer, J.T. (2012), "Plastic deformation and ductile fracture of Ti-6Al-4V under various loading conditions", Ph.D. Dissertation, The Ohio State University, State of Ohio, USA.
  14. He, L., Su, H., Xu, J. and Zhang, L. (2018), "Inverse identification of constitutive parameters of Ti2AlNb intermetallic alloys based on cooperative particle swarm optimization", Chin. J. Aeronaut., 31(8), 1774-1785. https://doi.org/10.1016/j.cja.2018.01.002.
  15. Johnson, G.R. and Cook, W.H. (1985), "Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures", Eng. Fract. Mech., 21(1), 31-48. https://doi.org/10.1016/0013-7944(85)90052-9.
  16. Kajberg, J. and Lindkvist, G. (2004), "Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields", Int. J. Solid. Struct., 41(13), 3439-3459. https://doi.org/10.1016/j.ijsolstr.2004.02.021.
  17. Kajberg, J. and Wikman, B. (2007), "Viscoplastic parameter estimation by high strain-rate experiments and inverse modelling-Speckle measurements and high-speed photography", Int. J. Solid. Struct., 44(1), 145-164. https://doi.org/10.1016/j.ijsolstr.2006.04.018.
  18. Korkmaz, M.E., Gunay, M. and Verleysen, P. (2019), "Investigation of tensile Johnson-Cook model parameters for Nimonic 80A superalloy", J. Alloy. Compd., 801, 542-549. https://doi.org/10.1016/j.jallcom.2019.06.153.
  19. Lecompte, D., Smits, A., Sol, H., Vantomme, J. and Hemelrijck, D.V. (2007), "Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens", Int. J. Solid. Struct., 44(5), 1643-1656. https://doi.org/10.1016/j.ijsolstr.2006.06.050.
  20. Leseur, D. (1999), "Experimental investigations of material models for Ti-6A1-4V and 2024-T3", Lawrence Livermore National Laboratory, California, USA.
  21. Littell, J. (2008), "The experimental and analytical characterization of the macromechanical response for triaxial braided composite materials", Ph.D. Dissertation, University of Akron, State of Ohio, USA.
  22. Liu, R., Melkote, S.N., Pucha, R.V., Morehouse, J.B., Man, X. and Marusich T.D. (2013), "An enhanced constitutive material model for machining of Ti-6Al-4V alloy", J. Mater. Proc. Technol., 213(12), 2238-2246. https://doi.org/10.1016/j.jmatprotec.2013.06.015.
  23. Milani, A.S., Dabboussi, W., Nemes, J.A. and Abeyaratne, R.C. (2009), "An improved multi-objective identification of Johnson-Cook material parameters", Int. J. Impact. Eng., 36(2), 294-302. https://doi.org/10.1016/j.ijimpeng.2008.02.003.
  24. Moreau, A., Pagnacco, E., Lemosse, D. and Borza, D. (2006), "An evaluation of different mixed experimental/numerical procedures using FRF for the identification of viscoelastic materials", International Conference on Noise and Vibration Engineering, ISMA 2006, Leuven.
  25. Nelder, J.A. and Mead, R. (1965), "A simplex method for function minimization", Comput. J., 7(4), 308-313. https://doi.org/10.1007/s00466-019-01742-y.
  26. Notta-Cuvier, D., Langrand, B., Markiewicz, E. and Bourel, B. (2011), "An advanced procedure to identify viscoplastic parameters using the virtual fields method", Conference of the International Symposium on Plasticity, Puerto Vallerta, Mexico, January.
  27. Notta-Cuvier, D., Langrand, B., Markiewicz, E., Lauro, F. and Portemont, G. (2013), "Identification of Johnson-Cook's viscoplastic model parameters using the virtual fields method: Application to titanium alloy Ti6Al4V", Strain., 49(1), 22-45. https://doi.org/10.1111/str.12010.
  28. Ozel, T. and Karpat, Y. (2007), "Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms", Mater. Manuf. Proc., 22(5), 659-667. https://doi.org/10.1080/10426910701323631.
  29. Peroni, L., Scapin, M. and Peroni, M. (2010), "Identification of strain-rate and thermal sensitive material model with an inverse method", The European Physical Journal Conferences, Torino, Italy, June.
  30. Salvado, F.C., Teixeiradias, F., Walley, S.M., Lea, L. and Cardoso, J. (2017), "A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals", Prog. Mater. Sci., 88, 186-231. https://doi.org/10.1016/j.pmatsci.2017.04.004.
  31. Sato, Y., Okabe, T., Higuchi, R. and Yoshioka, K. (2014), "Multiscale approach to predict crack initiation in unidirectional off-axis laminates", Adv. Compos. Mater., 23(5-6), 461-475. https://doi.org/10.1080/09243046.2014.915100.
  32. Shang, S. and Yun, G.J. (2019), "On the existence of a global minimum in inverse parameters identification by Sel-fOptimizing inverse analysis method", Comput. Math. Appl., 77(3), 803-814. https://doi.org/10.1016/j.camwa.2018.10.019.
  33. Sima, M. and Ozel, T. (2010), "Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V", Int. J. Mach. Tool. Manuf., 50(11), 943-960. https://doi.org/10.1016/j.ijmachtools.2010.08.004.
  34. Wang, L.J., Deng, Q.C. and Xie, Y.X. (2017), "A new conjugate gradient algorithm for solving dynamic load identification", Struct. Eng. Mech., 64(2), 271-278. https://doi.org/10.12989/sem.2017.64.2.271.
  35. Wang, Y., Zhao, G., Xu, X., Chen, X. and Zhang, C. (2019), "Constitutive modeling, processing map establishment and microstructure analysis of spray deposited Al-Cu-Li alloy 2195", J. Alloy. Compd., 779, 735-751. https://doi.org/10.1016/j.jallcom.2018.11.289.
  36. Yan, Y., Wang, H. and Li, Q. (2015), "The inverse parameter identification of Hill 48 yield criterion and its verification in press bending and roll forming process simulations", J. Manuf. Proc., 20, 46-53. https://doi.org/10.1016/j.jmapro.2015.09.009.
  37. Yatnalkar, R.S. (2010), "Experimental investigation of plastic deformation of ti-6al-4v under various loading conditions", Ph.D. Dissertation, The Ohio State University. State of Ohio, USA.
  38. Yun, G.J. and Shang, S. (2011), "A self-optimizing inverse analysis method for estimation of cyclic elasto-plasticity model parameters", Int. J. Plast., 27(4), 576-595. https://doi.org/10.1016/j.ijplas.2010.08.003.
  39. Zhi, L., Yu, P., Tu, J., Chen, B. and Li, Y. (2017), "A Kalman filter based algorithm for wind load estimation on high-rise buildings", Struct. Eng. Mech., 64(4), 449-459. https://doi.org/10.12989/sem.2017.64.4.449.