Acknowledgement
We would like to thank Professor MG Park of Chonnam National University for kindly offering Alexandrium strains. This research was supported by a National Research Foundation (NRF) grant funded by the Korean government (MSIT) (NRF-2016R1A6A1A03012647, NRF-2020R1A2C3005053) to KYK.
References
- Bagby, S. C. & Chisholm, S. W. 2015. Response of Prochlorococcus to varying CO2:O2 ratios. ISME J. 9:2232-2245. https://doi.org/10.1038/ismej.2015.36
- Basti, L., Nagai, S., Go, J., Okano, S., Nagai, K., Watanabe, R., Suzuki, T. & Tanaka, Y. 2015. Differential inimical effects of Alexandrium spp. and Karenia spp. on cleavage, hatching, and two larval stages of Japanese pearl oyster Pinctada fucata martensii. Harmful Algae 43:1-12. https://doi.org/10.1016/j.hal.2014.12.004
- Basu, S. & Mackey, K. R. 2018. Phytoplankton as key mediators of the biological carbon pump: their responses to a changing climate. Sustainability 10:869. https://doi.org/10.3390/su10030869
- Bausch, A. R., Juhl, A. R., Donaher, N. A. & Cockshutt, A. M. 2019. Combined effects of simulated acidification and hypoxia on the harmful dinoflagellate Amphidinium carterae. Mar. Biol. 166:80. https://doi.org/10.1007/s00227-019-3528-y
- Beardall, J., Allen, D., Bragg, J., Finkel, Z. V., Flynn, K. J., Quigg, A., Rees, T. A. V., Richardson, A. & Raven, J. A. 2009. Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol. 181:295-309. https://doi.org/10.1111/j.1469-8137.2008.02660.x
- Benard, R., Levasseur, M., Scarratt, M., Blais, M. -A., Mucci, A., Ferreyra, G., Starr, M., Gosselin, M., Tremblay, J. -E. & Lizotte, M. 2018. Experimental assessment of the sensitivity of an estuarine phytoplankton fall bloom to acidification and warming. Biogeosciences 15:4883-4904. https://doi.org/10.5194/bg-15-4883-2018
- Bergkvist, J., Thor, P., Jakobsen, H. H., Wangberg, S. -A. & Selander, E. 2012. Grazer-induced chain length plasticity reduces grazing risk in a marine diatom. Limnol. Oceanogr. 57:318-324. https://doi.org/10.4319/lo.2012.57.1.0318
- Bjaerke, O., Jonsson, P. R., Alam, A. & Selander, E. 2015. Is chain length in phytoplankton regulated to evade predation? J. Plankton Res. 37:1110-1119. https://doi.org/10.1093/plankt/fbv076
- Brandenburg, K. M., Krock, B., Klip, H. C. L., Sluijs, A., Garbeva, P. & Van de Waal, D. B. 2021. Intraspecific variation in multiple trait responses of Alexandrium ostenfeldii towards elevated pCO2. Harmful Algae 101:101970. https://doi.org/10.1016/j.hal.2020.101970
- Brondizio, E., Diaz, S., Settele, J. & Ngo, H. T. 2019. IPBES: Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat, Bonn, pp. 680-681.
- Cai, W. -J., Hu, X., Huang, W. -J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W. -C., Zhai, W., Hollibuagh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M. & Gong, G. -C. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4:766-770. https://doi.org/10.1038/ngeo1297
- Carstensen, J. & Duarte, C. M. 2019. Drivers of pH variability in coastal ecosystems. Environ. Sci. Technol. 53:4020-4029. https://doi.org/10.1021/acs.est.8b03655
- Comeau, S., Carpenter, R. C. & Edmunds, P. J. 2013. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc. R. Soc. B 280:20122374. https://doi.org/10.1098/rspb.2012.2374
- Cornwall, C. E. & Hurd, C. L. 2016. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73:572-581. https://doi.org/10.1093/icesjms/fsv118
- Dai, L., Geng, H. -X., Yu, R. -C., Liu, Y., Zhao, J. -Y., Wang, J. -X., Zhang, Q. -C., Kong, F. -Z. & Zhou, M. -J. 2020. Distribution of Alexandrium pacificum cysts in the area adjacent to the Changjiang River estuary, China. Mar. Pollut. Bull. 156:111206. https://doi.org/10.1016/j.marpolbul.2020.111206
- Ding, D., Xing, J., Wang, S., Chang, X. & Hao, J. 2019. Impacts of emissions and meteorological changes on China's ozone pollution in the warm seasons of 2013 and 2017. Front. Environ. Sci. Eng. 13:76. https://doi.org/10.1007/s11783-019-1160-1
- Doney, S. C., Balch, W. M., Fabry, V. J. & Feely, R. A. 2009. Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography 22:16-25.
- Farrell, A. P. 2009. Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids. J. Exp. Biol. 212:3771-3780. https://doi.org/10.1242/jeb.023671
- Feng, Y., Hare, C. E., Leblanc, K., Rose, J. M., Zhang, Y., DiTullio, G. R., Lee, P. A., Wilhelm, S. W., Rowe, J. M., Sun, J., Nemcek, N., Gueguen, C., Passow, U., Benner, I., Brown, C. & Hutchins, D. A. 2009. Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Mar. Ecol. Prog. Ser. 388:13-25. https://doi.org/10.3354/meps08133
- Fraga, S., Gallager, S. M. & Anderson, D. M. 1989. Chain-forming dinoflagellates: an adaptation to red tides. In Okaichi, T., Anderson, D. M. & Nemoto, T. (Eds.) Red Tides: Biology, Environmental Science, and Toxicology. Elsevie, Amsterdam, pp. 281-284.
- Fu, F. X., Tatters, A. O. & Hutchins, D. A. 2012. Global change and the future of harmful algal blooms in the ocean. Mar. Ecol. Prog. Ser. 470:207-233. https://doi.org/10.3354/meps10047
- Fu, F. -X., Zhang, Y., Warner, M. E., Feng, Y., Sun, J. & Hutchins, D. A. 2008. A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum. Harmful Algae 7:76-90. https://doi.org/10.1016/j.hal.2007.05.006
- Gao, G., Liu, Y., Li, X., Feng, Z. & Xu, J. 2016. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress. PLoS ONE 11:e0169040. https://doi.org/10.1371/journal.pone.0169040
- Gao, K., Zhang, Y. & Hader, D. -P. 2018. Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. J. Appl. Phycol. 30:743-759. https://doi.org/10.1007/s10811-017-1329-6
- Gattuso, J. -P., Magnan, A., Bille, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Portner, H. -O., Rogers, A. D., Baxer, J. M., Laffoley, D., Osborna, D., Rankovic, A., Rochette, J., Sumaila, U. R., Treyer, S. & Turley, C. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:aac4722. https://doi.org/10.1126/science.aac4722
- Genovesi, B., Berrebi, P., Nagai, S., Reynaud, N., Wang, J. & Masseret, E. 2015. Geographic structure evidenced in the toxic dinoflagellate Alexandrium pacificum Litaker (A. catenella-group IV (Whedon & Kofoid) Balech) along Japanese and Chinese coastal waters. Mar. Pollut. Bull. 98:95-105. https://doi.org/10.1016/j.marpolbul.2015.07.009
- Genty, B., Briantais, J. -M. & Baker, N. R. 1989. The relationship between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta Gen. Subj. 990:87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
- Guinotte, J. M. & Fabry, V. J. 2008. Ocean acidification and its potential effects on marine ecosystems. Ann. N. Y. Acad. Sci. 1134:320-342. https://doi.org/10.1196/annals.1439.013
- Guiry, M. D. & Guiry, G. M. 2021. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: https://www.algaebase.org. Accessed Jan 14, 2021.
- Hattenrath-Lehmann, T. K., Smith, J. L., Wallace, R. B., Merlo, L., Koch, F., Mittelsdorf, H., Goleski, J. A., Anderson, D. M. & Gobler, C. J. 2015. The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate, Alexandrium fundyense. Limnol. Oceanogr. 60:198-214. https://doi.org/10.1002/lno.10012
- He, Q. & Silliman, B. R. 2019. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 29:R1021-R1035. https://doi.org/10.1016/j.cub.2019.08.042
- Hennon, G. M. M., Hernandez Limon, M. D., Haley, S. T., Juhl, A. R. & Dyhrman, S. T. 2017. Diverse CO2-induced responses in physiology and gene expression among eukaryotic phytoplankton. Front. Microbiol. 8:2547. https://doi.org/10.3389/fmicb.2017.02547
- Hurd, C. L., Hepburn, C. D., Currie, K. I., Raven, J. A. & Hunter, K. A. 2009. Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. J. Phycol. 45:1236-1251. https://doi.org/10.1111/j.1529-8817.2009.00768.x
- Hutchins, D. A. & Fu, F. 2017. Microorganisms and ocean global change. Nat. Microbiol. 2:17058. https://doi.org/10.1038/nmicrobiol.2017.58
- Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R., Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R. H., Tyrrell, T., Gibbs, S. J., von Dassow, P., Rehm, E., Armbrust, E. V. & Boessenkool, K. P. 2008. Phytoplankton calcification in a high-CO2 world. Science 320:336-340. https://doi.org/10.1126/science.1154122
- Jang, S. H. & Jeong, H. J. 2020. Spatio-temporal distributions of the newly described mixotrophic dinoflagellate Yihiella yeosuensis (Suessiaceae) in Korean coastal waters and its grazing impact on prey populations. Algae 35:45-59. https://doi.org/10.4490/algae.2020.35.2.24
- Ji, X., Verspagen, J. M. H., Stomp, M. & Huisman, J. 2017. Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why? J. Exp. Bot. 68:3815-3828. https://doi.org/10.1093/jxb/erx027
- Joint, I., Doney, S. C. & Karl, D. M. 2011. Will ocean acidification affect marine microbes? ISME J. 5:1-7. https://doi.org/10.1038/ismej.2010.79
- Kang, H. C., Jeong, H. J., Jang, S. H. & Lee, K. H. 2019a. Feeding by common heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) compared to that of other suessioid dinoflagellates. Algae 34:127-140. https://doi.org/10.4490/algae.2019.34.5.29
- Kang, H. C., Jeong, H. J., Lim, A. S., Ok, J. H., You, J. H., Park, S. A., Lee, S. Y. & Eom, S. H. 2020. Effects of temperature on the growth and ingestion rates of the newly described mixotrophic dinoflagellate Yihiella yeosuensis and its two optimal prey species. Algae 35:263-275. https://doi.org/10.4490/algae.2020.35.8.20
- Kang, H. C., Jeong, H. J., Ok, J. H., You, J. H., Jang, S. H., Lee, S. Y., Lee, K. H., Park, J. Y. & Rho, J. -R. 2019b. Spatial and seasonal distributions of the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) in Korea: quantification using qPCR. Algae 34:111-126. https://doi.org/10.4490/algae.2019.34.5.25
- Kim, H. M., Jo, J., Park, C., Choi, B. -J., Lee, H. -G. & Kim, K. Y. 2019. Epibionts associated with floating Sargassum horneri in the Korea Strait. Algae 34:303-313. https://doi.org/10.4490/algae.2019.34.12.10
- Kim, J. -H., Kim, K. Y., Kang, E. J., Lee, K., Kim, J. -M., Park, K. -T., Shin, K., Hyun, B. & Jeong, H. J. 2013. Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean. Biogeosciences 10:7525-7535. https://doi.org/10.5194/bg-10-7525-2013
- Kim, J. -M., Lee, K., Han, I. -S., Lee, J. -S., Choi, Y. -H., Lee, J. H. & Moon, J. -Y. 2020. Anthropogenic nitrogen-induced changes in seasonal carbonate dynamics in a productive coastal environment. Geophys. Res. Lett. 47:e2020GL088232.
- Kim, S. -Y., Lee, Y. -H., Kim, Y. -S., Shim, J. -H., Ye, M. -J., Jeon, J. -W., Hwang, J. -R. & Jeon, S. -H. 2012. Characteristics of marine environmental in the hypoxic season at Jinhae Bay in 2010. Korean J. Nat. Conserv. 6:115-129. https://doi.org/10.11624/KJNC.2012.6.2.115
- Kottmeier, D. M., Rokitta, S. D. & Rost, B. 2016. H+-driven increase in CO2 uptake and decrease in HCO3- uptake explain coccolithophores' acclimation responses to ocean acidification. Limnol. Oceanogr. 61:2045-2057. https://doi.org/10.1002/lno.10352
- Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M. & Gattuso, J. -P. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19:1884-1896. https://doi.org/10.1111/gcb.12179
- Kruk, C., Piccini, C., Devercelli, M., Nogueira, L., Accattatis, V., Sampognaro, L. & Segura, A. M. 2021. A trait-based approach predicting community assembly and dominance of microbial invasive species. Oikos 130:571-586. https://doi.org/10.1111/oik.07694
- Laws, E. A., Bidigare, R. R. & Popp, B. N. 1997. Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum. Limnol. Oceanogr. 42:1552-1560. https://doi.org/10.4319/lo.1997.42.7.1552
- Lee, H. -G., Kim, H. M., Min, J., Park, C., Jeong, H. J., Lee, K. & Kim, K. Y. 2020a. Quantification of the paralytic shellfish poisoning dinoflagellate Alexandrium species using a digital PCR. Harmful Algae 92:101726. https://doi.org/10.1016/j.hal.2019.101726
- Lee, K. H., Jeong, H. J., Kang, H. C., Ok, J. H., You, J. H. & Park, S. A. 2019a. Growth rates and nitrate uptake of co-occurring red-tide dinoflagellates Alexandrium affine and A. fraterculus as a function of nitrate concentration under light-dark and continuous light conditions. Algae 34:237-251. https://doi.org/10.4490/algae.2019.34.8.28
- Lee, S. Y., Jeong, H. J., Kwon, J. E., You, J. H., Kim, S. J., Ok, J. H., Kang, H. C. & Park, J. Y. 2019b. First report of the photosynthetic dinoflagellate Heterocapsa minima in the Pacific Ocean: morphological and genetic characterizations and the nationwide distribution in Korea. Algae 34:7-21. https://doi.org/10.4490/algae.2019.34.2.28
- Lee, S. Y., Jeong, H. J., Ok, J. H., Kang, H. C. & You, J. H., 2020b. Spatial-temporal distributions of the newly described mixotrophic dinoflagellate Gymnodinium smaydae in Korean coastal waters. Algae 35:225-236. https://doi.org/10.4490/algae.2020.35.8.25
- Lewis, E. R. & Wallace, D. W. R. 1998. Program developed for CO2 system calculations. Carbon Dioxide Information Center. Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, 38 pp.
- Lim, A. S., Jeong, H. J. & Ok, J. H. 2019. Five Alexandrium species lacking mixotrophic ability. Algae 34:289-301. https://doi.org/10.4490/algae.2019.34.11.21
- Lim, M. H., Lee, C. H., Min, J., Lee, H. -G. & Kim, K. Y. 2020. Effect of elevated pCO2 on thermal performance of Chattonella marina and Chattonella ovata (Raphidophyceae). Algae 35:375-388. https://doi.org/10.4490/algae.2020.35.12.8
- Listmann, L., LeRoch, M., Schluter, L., Thomas, M. K. & Reusch, T. B. H. 2016. Swift thermal reaction norm evolution in a key marine phytoplankton species. Evol. Appl. 9:1156-1164. https://doi.org/10.1111/eva.12362
- Lovecchio, S., Climent, E., Stocker, R. & Durham, W. M. 2019. Chain formation can enhance the vertical migration of phytoplankton through turbulence. Sci. Adv. 5:eaaw7879. https://doi.org/10.1126/sciadv.aaw7879
- Maugendre, L., Gattuso, J. -P., Louis, J., De Kluijver, A., Marro, S., Soetaert, K. & Gazeau, F. 2015. Effect of ocean warming and acidification on a plankton community in the NW Mediterranean Sea. ICES J. Mar. Sci. 72:1744-1755. https://doi.org/10.1093/icesjms/fsu161
- Millero, F. J., Zhang, J. -Z., Lee, K. & Campbell, D. M. 1993. Titration alkalinity of seawater. Mar. Chem. 44:153-165. https://doi.org/10.1016/0304-4203(93)90200-8
- NOAA/GML (ESRL's Global Monitoring Laboratory of the National Oceanic and Atmospheric Administration). 2021. Trends in atmospheric carbon dioxide. Available from: https://gml.noaa.gov/ccgg/trends/. Accessed Sep 30, 2021.
- NOAA/NCEI (National Centers for Environmental Information of the National Oceanic and Atmospheric Administration). 2021. Global climate report. Available from: https://www.ncdc.noaa.gov/sotc/global/. Accessed Sep 30, 2021.
- O'Donnell, D. R., Hamman, C. R., Johnson, E. C., Kremer, C. T., Klausmeier, C. A. & Litchman, E. 2018. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob. Change Biol. 24:4554-4565. https://doi.org/10.1111/gcb.14360
- Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. -K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M. -F., Yamanaka, Y. & Yool, A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681-686. https://doi.org/10.1038/nature04095
- Pahlow, M., Riebesell, U. & Wolf-Gladrow, D. A. 1997. Impact of cell shape and chain formation on nutrient acquisition by marine diatoms. Limnol. Oceanogr. 42:1660-1672. https://doi.org/10.4319/lo.1997.42.8.1660
- Pang, M., Xu, J., Qu, P., Mao, X., Wu, Z., Xin, M., Sun, P., Wang, Z., Zhang, X. & Chen, H. 2017. Effect of CO2 on growth and toxicity of Alexandrium tamarense from the East China Sea, a major producer of paralytic shellfish toxins. Harmful Algae 68:240-247. https://doi.org/10.1016/j.hal.2017.08.008
- Paul, C., Sommer, U., Garzke, J., Moustaka-Gouni, M., Paul, A. & Matthiessen, B. 2016. Effects of increased CO2 concentration on nutrient limited coastal summer plankton depend on temperature. Limnol. Oceanogr. 61:853-868. https://doi.org/10.1002/lno.10256
- Portner, H. -O., Bock, C. & Mark, F. C. 2017. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220:2685-2696. https://doi.org/10.1242/jeb.134585
- Raven, J. A., Beardall, J. & Sanchez-Baracaldo, P. 2017. The possible evolution and future of CO2-concentrating mechanisms. J. Exp. Bot. 68:3701-3716. https://doi.org/10.1093/jxb/erx110
- Reinfelder, J. R. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann. Rrev. Mar. Sci. 3:291-315. https://doi.org/10.1146/annurev-marine-120709-142720
- Reusch, T. B. H. & Boyd, P. W. 2013. Experimental evolution meets marine phytoplankton. Evolution 67:1849-1859. https://doi.org/10.1111/evo.12035
- Riebesell, U. & Gattuso, J. -P. 2015. Lessons learned from ocean acidification research. Nat. Clim. Chang. 5:12-14. https://doi.org/10.1038/nclimate2456
- Rosso, L., Lobry, J. R. & Flandrois, J. P. 1993. An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J. Theor. Biol. 162:447-463. https://doi.org/10.1006/jtbi.1993.1099
- Rost, B., Zondervan, I. & Wolf-Gladrow, D. 2008. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions. Mar. Ecol. Prog. Ser. 373:227-237. https://doi.org/10.3354/meps07776
- Ryan, J. P., McManus, M. A. & Sullivan, J. M. 2010. Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Cont. Shelf Res. 30:7-16. https://doi.org/10.1016/j.csr.2009.10.017
- Selander, E., Jakobsen, H. H., Lombard, F. & Kiorboe, T. 2011. Grazer cues induce stealth behavior in marine dinoflagellates. Proc. Natl. Acad. Sci. U. S. A. 108:4030-4034. https://doi.org/10.1073/pnas.1011870108
- Shin, H. H., Li, Z., Kim, E. S., Park, J. -W. & Lim, W. A. 2017. Which species, Alexandrium catenella (Group I) or A. pacificum (Group IV), is really responsible for past paralytic shellfish poisoning outbreaks in Jinhae-Masan Bay, Korea? Harmful Algae 68:31-39. https://doi.org/10.1016/j.hal.2017.07.006
- Smayda, T. J. 2010. Adaptations and selection of harmful and other dinoflagellate species in upwelling systems. 2. Motility and migratory behaviour. Prog. Oceanogr. 85:71-91. https://doi.org/10.1016/j.pocean.2010.02.005
- Sobrino, C., Ward, M. L. & Neale, P. J. 2008. Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, photosynthesis, and spectral sensitivity of photoinhibition. Limnol. Oceanogr. 53:494-505. https://doi.org/10.4319/lo.2008.53.2.0494
- van de Poll, W. H., Abdullah, E., Visser, R. J. W., Fischer, P. & Buma, A. G. J. 2020. Taxon-specific dark survival of diatoms and flagellates affects Arctic phytoplankton composition during the polar night and early spring. Limnol. Oceanogr. 65:903-914. https://doi.org/10.1002/lno.11355
- van de Waal, D. B., Brandenburg, K. M., Keuskamp, J., Trimborn, S., Rokitta, S., Kranz, S. A. & Rost, B. 2019. Highest plasticity of carbon-concentrating mechanisms in earliest evolved phytoplankton. Limnol. Oceanogr. Lett. 4:37-43. https://doi.org/10.1002/lol2.10102
- Xu, Z., Gao, G., Xu, J. & Wu, H. 2017. Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment. Biogeosciences 14:671-681. https://doi.org/10.5194/bg-14-671-2017
- You, J. H., Jeong, H. J., Kang, H. C., Ok, J. H., Park, S. A. & Lim, A. S. 2020. Feeding by common heterotrophic protist predators on seven Prorocentrum species. Algae 35:61-78. https://doi.org/10.4490/algae.2020.35.2.28
- Zeebe, R. E., Zachos, J. C., Caldeira, K. & Tyrrell, T. 2008. Carbon emissions and acidification. Science 321:51-52. https://doi.org/10.1126/science.1159124
- Zunino, S., Libralato, S., Canu, D. M., Prato, G. & Solidoro, C. 2021. Impact of ocean acidification on ecosystem functioning and services in habitat-forming species and marine ecosystems. Ecosystems 24:1561-1575. https://doi.org/10.1007/s10021-021-00601-3