DOI QR코드

DOI QR Code

Proliferation of Mouse Prostate Cancer Cells Inflamed by Trichomonas vaginalis

  • Kim, Sang-Su (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Kim, Kyu-Shik (Department of Urology, Hanyang University Guri Hospital, Hanyang University College of Medicine) ;
  • Han, Ik-Hwan (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Kim, Yeseul (Department of Pathology, Hanyang University College of Medicine) ;
  • Bang, Seong Sik (Department of Pathology, Hanyang University College of Medicine) ;
  • Kim, Jung-Hyun (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Kim, Yong-Suk (Department of Biochemistry and Molecular Biology, Hanyang University College of Medicine) ;
  • Choi, Soo-Yeon (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Ryu, Jae-Sook (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine)
  • Received : 2021.08.03
  • Accepted : 2021.11.17
  • Published : 2021.12.31

Abstract

Our objective was to investigate whether inflammatory microenvironment induced by Trichomonas vaginalis infection can stimulate proliferation of prostate cancer (PCa) cells in vitro and in vivo mouse experiments. The production of CXCL1 and CCL2 increased when cells of the mouse PCa cells (TRAMP-C2 cell line) were infected with live T. vaginalis. T. vaginalis-conditioned medium (TCM) prepared from co-culture of PCa cells and T. vaginalis increased PCa cells migration, proliferation and invasion. The cytokine receptors (CXCR2, CCR2, gp130) were expressed higher on the PCa cells treated with TCM. Pretreatment of PCa cells with antibodies to these cytokine receptors significantly reduced the proliferation, mobility and invasiveness of PCa cells, indicating that TCM has its effect through cytokine-cytokine receptor signaling. In C57BL/6 mice, the prostates injected with T. vaginalis mixed PCa cells were larger than those injected with PCa cells alone after 4 weeks. Expression of epithelial-mesenchymal transition markers and cyclin D1 in the prostate tissue injected with T. vaginalis mixed PCa cells increased than those of PCa cells alone. Collectively, it was suggested that inflammatory reactions by T. vaginalis-stimulated PCa cells increase the proliferation and invasion of PCa cells through cytokine-cytokine receptor signaling pathways.

Keywords

Acknowledgement

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (NRF-2017R1A2B4002072). The data that support the findings of this study are available from the corrresponding author upon reasonable request and the experiments complied with the current laws of this country.

References

  1. World Health Organization. Report on Global Sexually Transmitted Infection Surveillance [internet]. Geneva, Switzerland: World Health Organization. 2018. Arailable from: https://www.who.int/reproductivehealth/publications/stis-surveillance-2018/en.
  2. Menezes CB, Frasson AP, Tasca T. Trichomoniasis - are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microb Cell 2016; 3: 404-419. https://doi.org/10.15698/mic2016.09.526
  3. Skerka V, Schonwald S, Krhen I, Leo M, Ante B, Natasa-Sterk K, Vladimira K, Adriana V. Aetiology of chronic prostatitis. Int J Antimicrob Agents 2002; 19: 471-474. https://doi.org/10.1016/S0924-8579(02)00087-0
  4. Lee JJ, Moon HS, Lee TY, Hwang HS, Ahn MH, Ryu JS. PCR for diagnosis of male Trichomonas vaginalis infection with chronic prostatitis and urethritis. Korean J Parasitol 2012; 50: 157-159. https://doi.org/10.3347/kjp.2012.50.2.157
  5. Mitteregger D, Aberle SW, Makristathis A, Walochnik J, Brozek W, Marberger M, Kramer G. High detection rate of Trichomonas vaginalis in benign hyperplastic prostatic tissue. Med Microbiol Immunol 2012; 201: 113-116. https://doi.org/10.1007/s00430-011-0205-2
  6. Gardner Jr WA, Culberson DE, Bennett BD. Trichomonas vaginalis in the prostate gland. Arch Pathol Lab Med 1986; 110: 430-432.
  7. Sutcliffe S, Neace C, Magnuson NS, Reeves R, Alderete JF. Trichomonosis, a common curable STI, and prostate carcinogenesis - a proposed molecular mechanism. PLoS Pathog 2012;8 e1002801. https://doi.org/10.1371/journal.ppat.1002801
  8. Stark JR, Judson G, Alderete JF, Mundodi V, Kucknoor AS, Giovannucci EL, Platz EA, Sutcliffe S, Fall K, Kurth T, Ma J, Stampfer MJ, Mucci LA. Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: Physicians' Health Study. J Natl Cancer Inst 2009; 101: 1406-1411. https://doi.org/10.1093/jnci/djp306
  9. Sutcliffe S, Giovannucci E, Alderete JF, Chang T, Gaydos CA, Zenilman JM, De Marzo AM, Willett WC, Platz EA. Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2006; 15: 939-945. https://doi.org/10.1158/1055-9965.EPI-05-0781
  10. Sutcliffe S, Alderete JF, Till C, Goodman PJ, Hsing AW, Zenilman JM, De Marzo AM, Platz EA. Trichomonosis and subsequent risk of prostate cancer in the Prostate Cancer Prevention Trial. Int J Cancer 2009; 124: 2082-2087. https://doi.org/10.1002/ijc.24144
  11. Caini S, Gandini S, Dudas M, Bremer V, Severi E, Gherasim A. Sexually transmitted infections and prostate cancer risk: a systematic review and meta-analysis. Cancer Epidemiol 2014; 38: 329-338. https://doi.org/10.1016/j.canep.2014.06.002
  12. Shacter E, Weitzman SA. Chronic inflammation and cancer. Oncology 2002;16: 217-226.
  13. Kamp DW, Shacter E, Weitzman SA. Chronic inflammation and cancer: the role of the mitochondria. Oncology 2011; 25: 400-410.
  14. Ha NH, Park DG, Woo BH, Kim DJ, Choi JI, Park BS, Kim YD, Lee JH, Park HT. Porphyromonas gingivalis increases the invasiveness of oral cancer cells by upregulating IL-8 and MMPs. Cytokine 2016; 86: 64-72. https://doi.org/10.1016/j.cyto.2016.07.013
  15. Simons BW, Durham NM, Bruno TC, Grosso JF, Schaeffer AJ, Ross AE, Hurley PJ, Berman DM, Drake CG, Thumbikat P, Schaeffer EM. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J Pathol 2015; 235: 478-489. https://doi.org/10.1002/path.4472
  16. Xu Y, Li H, Chen W, Yao X, Xing Y, Wang X, Zhong J, Meng G. Mycoplasma hyorhinis activates the NLRP3 inflammasome and promotes migration and invasiveness of gastric cancer cells. PLoS One 2013; 8: e77955. https://doi.org/10.1371/journal.pone.0077955
  17. Twu O, Dessi D, Vu A, Mercer F, Stevens GC, de Miguel N, Rappelli P, Cocco AR, Clubb RT, Fiori PL, Johnson PJ. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc Natl Acad Sci USA 2014; 111: 8179-8184. https://doi.org/10.1073/pnas.1321884111
  18. Adekoya TO, Richardson RM. Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int J Mol Sci 2020; 23: 4449. https://doi.org/10.3390/ijms21124449
  19. Chung HY, Kim JH, Han IH, Ryu JS. Polarization of M2 macrophages by interaction between prostate cancer cells treated with Trichomonas vaginalis and adipocytes. Korean J Parasitol 2020; 58: 217-227. https://doi.org/10.3347/kjp.2020.58.3.217
  20. Kim JH, Kim SS, Han IH, Sim S, Ahn MH, Ryu JS. Proliferation of prostate stromal cell induced by benign prostatic hyperplasia epithelial cell stimulated with Trichomonas vaginalis via crosstalk with mast cell. Prostate 2016; 76: 1431-1444. https://doi.org/10.1002/pros.23227
  21. Han IH, Kim JH, Kim SS, Ahn MH, Ryu JS. Signalling pathways associated with IL-6 production and epithelial-mesenchymal transition induction in prostate epithelial cells stimulated with Trichomonas vaginalis. Parasite Immunol 2016; 38: 678-687. https://doi.org/10.1111/pim.12357
  22. Kim JH, Han IH, Shin SJ, Park SY, Chung HY, Ryu JS. Signaling role of adipocyte leptin in prostate cell proliferation induced by Trichomonas vaginalis. Korean J Parasitol 2021; 59: 235-249. https://doi.org/10.3347/kjp.2021.59.3.235
  23. Somers KD, Brown RR, Holterman DA, Yousefieh N, Glass WF, Wright jr GL, Schellhammer PF, Qian J, Ciavarra RP. Orthotopic treatment model of prostate cancer and metastasis in the immunocompetent mouse: efficacy of flt3 ligand immunotherapy. Int J Cancer 2003; 107: 773-780. https://doi.org/10.1002/ijc.11464
  24. Jang SM, Han H, Jun YJ, Jang SH, Min KW, Sim J, Ahn HI, Lee KH, Jang KS, Paik SS. Clinicopathological significance of CADM4 expression, and its correlation with expression of E-cadherin and Ki67 in colorectal adenocarcinomas. J Clin Pathol 2012; 65: 902-906. https://doi.org/10.1136/jclinpath-2012-200730
  25. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer DM. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 2012; 13: 607-615. https://doi.org/10.1016/S1470-2045(12)70137-7
  26. Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, longterm foe. Clin Cancer Res 2009; 15: 425-430. https://doi.org/10.1158/1078-0432.CCR-08-0149
  27. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 50-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  28. Mantovani A. Cancer: inflaming metastasis. Nature 2009; 457: 36-37. https://doi.org/10.1038/457036b
  29. Mantovani A, Garlanda C, Allavavena P. Molecular pathways and targets in cancer-related inflammation. Ann Med 2010; 42: 161-170. https://doi.org/10.3109/07853890903405753
  30. Nickel JC, Roehrborn CG, O'Leary MP, Bostwick DG, Somerville MC, Rittmaster RS. The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial. Eur Urol 2008; 54: 1379-1384. https://doi.org/10.1016/j.eururo.2007.11.026
  31. de Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG, Nakai Y, Isaacs WB, Nelson WG. Inflammation in prostate carcinogenesis. Nat Rev Cancer 2007; 7: 256-269. https://doi.org/10.1038/nrc2090
  32. Frieling JS, Li T, Tauro M, Lynch CC. Prostate cancer-derived MMP3 controls intrinsic cell growth and extrinsic angiogenesis. Neoplasia 2020; 22: 511-521. https://doi.org/10.1016/j.neo.2020.08.004
  33. Rao SR, Snaith AE, D Marino D, Cheng X, Lwin ST, Orriss IR, Hamdy FC, Edwards CM. Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. Br J Cancer 2017; 116: 227-236. https://doi.org/10.1038/bjc.2016.402
  34. Kharmate G, Hosseini-Beheshti E, Caradec J, Chin MY, Tomlinson Guns ES. Epidermal growth factor receptor in prostate cancer derived exosomes. PLoS One 2016; 11: e0154967. https://doi.org/10.1371/journal.pone.0154967
  35. Cheng WL, Wang CS, Huang YH, Tsai MM, Liang Y, Lin KH. Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasiveness in gastric cancer. Ann Oncol 2011; 22: 2267-2276. https://doi.org/10.1093/annonc/mdq739
  36. Verbeke H, Struyf S, Laureys G, Van Damme J. The expression and role of CXC chemokines in colorectal cancer. Cytokine Growth Factor Rev 2011; 22: 345-358. https://doi.org/10.1016/j.cytogfr.2011.09.002
  37. Dhawan P, Richmond A. Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol 2002; 72: 9-18. https://doi.org/10.1189/jlb.72.1.9
  38. Miyake M, Lawton A, Goodison S, Urquidi V, Rosser CJ. Chemokine (C-X-C motif) ligand 1 (CXCL1) protein expression is increased in high-grade prostate cancer. Pathol Res Pract 2014; 210: 74-78. https://doi.org/10.1016/j.prp.2013.08.013
  39. Lu Y, Cai Z, Xiao G, Liu Y, Keller ET, Yao Z, Zhang J. CCR2 expression correlates with prostate cancer progression. J Cell Biochem 2007; 101: 676-685. https://doi.org/10.1002/jcb.21220
  40. Lu Y, Chen Q, Corey E, Xie W, Fan J, Mizokami A, Zhang J. Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clin Exp Metastasis 2009; 26: 161-169. https://doi.org/10.1007/s10585-008-9226-7
  41. Nguyen DP, Li J, Tewari AK. Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int 2014; 113: 986-992. https://doi.org/10.1111/bju.12452
  42. Azevedo A, Cunha V, Teixeira AL, Medeiros R. IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol 2011; 2: 384-396. https://doi.org/10.5306/wjco.v2.i12.384
  43. Porta C, Riboldi E, Sica A. Mechanisms linking pathogens-associated inflammation and cancer. Cancer Lett 2011; 305: 250-262. https://doi.org/10.1016/j.canlet.2010.10.012
  44. Kruk J, Aboul-Enein HY. Reactive Oxygen and Nitrogen Species in carcinogenesis: implications of oxidative stress on the progression and development of several cancer types. Mini Rev Med Chem 2017; 17: 904-919. https://doi.org/10.2174/1389557517666170228115324
  45. Fuste NP, Castelblanco E, Felip I, Santacana M, Fernandes-Hernanadez R, Gatius S, Pedraza N, Pallares J, Cemeli T, Valls J, Rarres M, Ferrezuelo F, Dolcet X, Matias-Guiu X, Gari E. Characterization of cytoplasmic cyclin D1 as a marker of invasiveness in cancer. Oncotarget 2016; 7: 26979-26991. https://doi.org/10.18632/oncotarget.8876
  46. Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 1993; 7: 331-342. https://doi.org/10.1101/gad.7.3.331
  47. Li Z, Wang C, Jiao X, Lu Y, Fu M, Quong AA, Dye C, Yang J, Dai M, Zhang X, Li A, Burbelo P, Stanley ER, Pestell RG. Cyclin D1 regulates cellular migration through the inhibition of thrombospondin 1 and ROCK signaling. Mol Cell Biol 2006; 26: 4240-4256. https://doi.org/10.1128/MCB.02124-05
  48. Lo UG, Lee CF, Lee MS, Hsieh JT. The role and mechanism of epithelial-to-mesenchymal transition in prostate cancer progression. Int J Mol Sci 2017; 18: 2079. https://doi.org/10.3390/ijms18102079