DOI QR코드

DOI QR Code

Zirconia-Alumina Composite Coating Materials for Low Temperature Process

저온 공정용 지르코니아-알루미나 복합 코팅제 연구

  • Choi, Jongwan (Department of Chemistry and Life Science, Sahmyook University)
  • 최종완 (삼육대학교 화학생명과학과)
  • Received : 2021.11.30
  • Accepted : 2021.12.23
  • Published : 2021.12.30

Abstract

In this study, we have studied synthesis of zirconia-alumina composite coating materials via a low-temperature sol-gel process. The zirconia-alumina composites were prepared by coating zirconia precursor, alumina precursor, and organosilane mixture on a polyethylene terephthalate substrate through three steps: sol-gel process, low-temperature photocuring process, and heat treatment process. The structural properties and element analysis of the composites were confirmed by FT-IR and XPS. The coated composite showed a transmittance of 96% or more in the visible light region with a wavelength of 420 nm or more and pencil hardness of 9H or more. In case of the composite of the molar ratio of zirconia and alumina of 1:4, the highest nanoindentation hardness was measured with 1.212 GPa.

지르코니아 복합체는 지르코니아 전구체, 알루미나 전구체, 그리고 유기 실란의 혼합물을 플라스틱 기판 위에 코팅하여 졸 겔 공정과 저온의 광경화 과정, 그리고 열처리 공정 등 세 단계를 거쳐 합성하였고, FT-IR과 XPS 분석을 통하여 지르코니아 전구체와 알루미나 전구체의 비율에 따라 합성된 복합체내 Zr 원소와 Al 원소 비율이 일치함을 확인하였다. 코팅된 복합체는 파장이 420 nm 이상인 가시광선 영역에서 96 % 이상의 투과도를 보였고, 기계적 강도는 연필 강도 9H 이상을 나타내었다. 특히 지르코니아와 알루미나의 몰 비가 1:4의 비율의 복합 코팅제의 나노 압입 경도가 1.212 GPa로 가장 높은 것으로 확인되었다.

Keywords

Acknowledgement

이 성과는 2020년 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임. (NRF-2020R1F1A1076752)

References

  1. I. D. Nikolov, C. D. Ivanov, "Optical plastic refractive measurements in the visible and the near-infrared regions". Applied Optics, Vol.39, No.13, pp.2067-2070. (2000). https://doi.org/10.1364/AO.39.002067
  2. C. Yang, L. Su, C. Huang, H. X. Huang, J. M. Castro, A. Y. Yi, "Effect of packing pressure on refractive index variation in injection molding of precision plastic optical lens". Advances in Polymer Technology, Vol.30, No.1, pp.51-61, (2011). https://doi.org/10.1002/adv.20211
  3. J. Loste, J.-M. Lopez-Cuesta, L. Billon, H. Garay, M. Save, "Transparent polymer nanocomposites: An overview on their synthesis and advanced properties". Progress in Polymer Science, Vol.89, No., pp.133-158, (2019). https://doi.org/10.1016/j.progpolymsci.2018.10.003
  4. Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, N. I. Rabiah, "A highly stretchable, transparent, and conductive polymer". Science advances, Vol.3, No.3, pp.1602076, (2017).
  5. H. Chatham, "Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates". Surface and Coatings Technology, Vol.78, No.1-3, pp.1-9, (1996). https://doi.org/10.1016/0257-8972(95)02420-4
  6. K. A. Sierros, A. J. Kessman, R. Nair, N. X. Randall, D. R. Cairns, "Spherical indentation and scratch durability studies of transparent conducting layers on polymer substrates". Thin Solid Films, Vol.520, No.1, pp.424-429, (2011). https://doi.org/10.1016/j.tsf.2011.08.024
  7. B. Henry, A. Erlat, A. McGuigan, C. Grovenor, G. Briggs, Y. Tsukahara, T. Miyamoto, N. Noguchi, T. Niijima, "Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates". Thin Solid Films, Vol.382, No.1-2, pp.194-201, (2001). https://doi.org/10.1016/s0040-6090(00)01769-7
  8. J. Sun, W. W. Gerberich, L. F. Francis, "Electrical and optical properties of ceramic-polymer nanocomposite coatings". Journal of Polymer Science Part B: Polymer Physics, Vol.41, No.14, pp.1744-1761, (2003). https://doi.org/10.1002/polb.10532
  9. S.-H. Lee, J. Choi, "ZrO2/TiO2/Organosilane Hybrid Composites via Low Temperature Sol-Gel Process for Hard and Transparent Coating". Journal of the Korean Applied Science and Technology, Vol.35, No.1, pp.80-88, (2018).
  10. M. Mohseni, S. Bastani, A. Jannesari, "Effects of silane precursors on curing behavior of UV-curable hybrid coatings". Journal of Thermal Analysis and Calorimetry, Vol.119, No.1, pp.515-526, (2015). https://doi.org/10.1007/s10973-014-4071-1
  11. W. M. Haynes, CRC handbook of chemistry and physics. 95th ed. Section 12, pp.236, CRC press (2014)
  12. A. Khodadadi, M. Farahmandjou, M. Yaghoubi, "Investigation on synthesis and characterization of Fe-doped Al2O3 nanocrystals by new sol-gel precursors". Materials Research Express, Vol.6, No.2, pp.025029, (2018). https://doi.org/10.1088/2053-1591/aaef70
  13. W. W. Anku, S. O.-B. Oppong, S. K. Shukla, E. S. Agorku, P. P. Govender, "Cobalt doped ZrO2 decorated multiwalled carbon nanotube: a promising nanocatalyst for photodegradation of indigo carmine and eosin Y dyes". Progress in Natural Science: Materials International, Vol.26, No.4, pp.354-361, (2016). https://doi.org/10.1016/j.pnsc.2016.06.007
  14. Y. Castro, M. Aparicio, R. Moreno, A. Duran, "Silica-Zirconia Sol-Gel Coatings Obtained by Different Synthesis Routes", Journal of Sol-Gel Science and Technology, Vol.35, No.1, pp.41-50, (2005). https://doi.org/10.1007/s10971-005-3213-0