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Abstract. In this study, we obtain various conditions for the non-null curve flows to be

inextensible in the 6-dimensional Lorentzian space L6. Then, we find partial differential

equations which characterize the family of inextensible non-null curves.

1. Introduction

The concept of elasticity has long been considered in the application of geometry.
Since the subject of “elastica” was studied by such greats as Galileo, Bernoulli, and
Euler, it has found numerous applications across physics, astronomy and mathemat-
ics. One finds in central of works in field theory, nonlinear optics, fluid dynamics,
sigma models, relativity, water wave theory, and so on [14, 15, 20].

The concept of elasticity is mainly described by the means of flow. Briefly,
the flow of a curve or a surface represents the time evolution of these geometric
objects. The term ”inextensible” is used to indicate a flow curve whose arc-length
is preserved in space. If the flow of a curve or a surface is inextensible, then its strain
energy is zero [10, 11]. Researching the inextensibility of curves in different spaces
is common among topics for geometers [3, 6, 8, 9, 13, 18, 16]. Inextensible flows of
planar curves have been researched in detail, and some examples of the latter have
been given in [11]. Gürbüz studied the properties of spacelike, timelike and null
curve flows to be inextensible in [3]. Körpınar et.al. approached inextensible flows
of curves in E3 by a new method [6]. Öğrenmiş et.al. investigated inextensible curve
flows in Galilean space [13]. Yıldız et.al. examined the subject in the n-dimensional
Euclidean space En [18].

In the early stages of Einstein’s theory, a bridge was built between physics
and geometry using the concepts of maps and curves. Null cases were studied to
understand general relativity as a dynamical theory of Frenet formalism. In this
way black holes were investigated in five and six dimensional spaces by considering
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a timelike curve [4]. In higher dimensional Lorentzian spaces such as Lorentzian
5- space, and Lorentzian 6-space, studying various characterizations of curves have
attracted the interest of several researchers [1, 2, 5, 7, 19, 17]. In particular, Yılmaz
et.al. determined the Frenet-Serret invariants of non-null curves in Lorentzian 6-
space [17].

The motivation of the present work is the goal of characterizing curves in a
higher dimensional space. For this purpose, we investigate the properties of non-
null curves characterizing inextensibility in Lorentzian 6-space. We give necessary
and sufficient conditions for the flow of a family of non-null curves to be inextensible,
and also present a system of partial differential equations for such a family of curves
in Lorentzian 6-space.

2. Basic Concepts

The Lorentzian space L6 is a real vector space R6 with the following metric:

(2.1) g = −dx21 + dx22 + dx23 + dx24 + dx25 + dx26,

where x = (x1, x2, x3, x4, x5, x6) ∈ L6. An arbitrary vector x of L6 is said to be
spacelike if g(x, x) > 0 or x = 0, timelike if g(x, x) < 0 and lightlike or null if

g(x, x) = 0 and x 6= 0. For x ∈ L6, the norm x is defined by ‖x‖ = (|g(x, x)|) 1
2 ,

and the vector x is called a unit vector if g(x, x) = ±1. The vectors x, y ∈ L6

are said to be orthogonal if the inner product of the vectors x, y are equal to
zero. A vector α(s) is called a unit speed curve if its velocity vector satisfies
‖α′‖ = (|g(α′, α′)|) 1

2 = 1 [12].
Let {V1(s), V2(s), V3(s), V4(s), V5(s), V6(s)} be a moving Frenet-Serret frame

along the curve α(s) in L6. For a non-null unit speed curve α(s), the Frenet-Serret
formulae are given as

(2.2)

∂V1

∂s = κ1V2,

∂Vi

∂s = −εi−2εi−1κi−1Vi−1 + κiVi+1, for i ∈ {2, 3, 4, 5},

∂V6

∂s = −ε4ε5κ5V5.

Here, g(Vi, Vj) = εj−1 = ±1 for 1 ≤ j ≤ 6, with respect to the character of the
frame vectors. The functions κ1, κ2, κ3, κ4, κ5 are the Frenet-Serret curvatures of
the curve α(s) in L6 [1, 2, 17].

Let
α : [0, l]× [0, w)→ L6

be a one parameter family of smooth curves in L6, where l is the arc-length of the
initial curve. Let u be the curve parametrization variable 0 ≤ u ≤ l. If the speed
curve α is denoted by

(2.3) v =
(∣∣g (dαdu , dαdu )∣∣) 1

2 ,
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then the arc-length of the curve α is

(2.4) s(u) =
u∫
0

(∣∣g (dαdu , dαdu )∣∣) 1
2 du =

u∫
0

vdu.

Any flow of the curve α is expressed by

(2.5) ∂α
∂t =

n∑
i=1

fiVi,

where fi denotes the ith scalar speed of the curve α. The arc-length variation is

(2.6) s(u, t) =
u∫
0

vdu.

A curve evolution α(u, t), and its flow ∂α
∂t is called an inextensible flow [18] if

(2.7) ∂
∂t

(∣∣g (∂α∂u , ∂α∂u )∣∣) 1
2 = 0.

3. Main Results

Let α be a family of differentiable non-null curves in Lorentzian 6-space L6.

Define v =
(∣∣g (dαdu , dαdu )∣∣) 1

2 and ds = vdu. The flows of a non-null curve family α
are parametrized by

(3.1) ∂α
∂t =

6∑
i=1

fiVi,

where the components fi are in L6.

Lemma 3.1. The flows of the non-null curves family α are inextensible in
Lorentzian 6-space L6, then we have

(3.2) ∂v
∂t = ∂f1

∂u − ε0ε1f2vκ1.

Proof. We have

(3.3) v2 =
∣∣g (dαdu , dαdu )∣∣ .

Differentiating the expression (3.3) with respect to t, then we obtain

(3.4)
2v ∂v∂t = ∂

∂tε0
(∣∣g (dαdu , dαdu )∣∣)

= 2ε0
[
g
(
dα
du ,

d
du

dα
dt

)]
.
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If we differentiate the flows of α with respect to u, then we arrive at

(3.5) d
du

dα
dt = d

du

6∑
i=1

fiVi =
6∑
i=1

(
∂fi
∂u Vi + fi

∂Vi

∂u

)
,

Substituting the expression (3.5) into the expression (3.4) and using the expression
(2.2), then we get

(3.6)

2v ∂v∂t = 2ε0

[
g
(
vV1,

(
∂f1
∂u V1 + vf2(−ε0ε1κ1V1 + κ2V3

))]
= 2ε0

[
v ∂f1∂u ε0 − v

2f2ε
2
0ε1κ1

]
.

�
Rearranging the expression (3.6), the proof of Lemma 3.1. is completed.

Theorem 3.2. The flows of the non-null curves family α are inextensible in
Lorentzian 6-space L6 if and only if

(3.7) ∂f1
∂s = ε0ε1κ1f2.

Proof. We know that

(3.8) ∂
∂ts(u, t) =

u∫
0

∂v
∂t du = 0,

u ∈ [0, l].

From the expression (3.8), we reach

(3.9) ∂
∂ts(u, t) =

u∫
0

(
∂f1
∂u − ε0ε1f2vκ1

)
du = 0.

Hence, the proof is completed. �

Lemma 3.3. Let {V1, V2, V3, V4, V5, V6} be a moving Frenet-Serret frame along
the non-null curves family α in Lorentzian 6-space L6. Then the derivatives of the
moving Frenet-Serret frame with respect to t are:

(3.10) ∂V1

∂t =

5∑
i=2

Vi

[
∂fi
∂s + fi−1κi−1 − εi−1εiκifi+1

]
+ V6

[
∂f6
∂s + f5κ5

]
,
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and for i = 2 . . . 5,

∂Vi

∂t = −ε0εi−1
[
∂fi
∂s + fi−1κi−1 − εi−1εiκifi+1

]
V1(3.11)

+

6∑
j=2

[
g
(
∂Vi

∂t , Vj
)
Vj
]
− g

(
∂Vi

∂t , Vi
)
Vi,

∂V6

∂t = −ε0ε5
[
∂f6
∂s + f5κ5

]
V1 +

6∑
j=2

[
g
(
∂Vi

∂t , Vj
)
Vj
]
− g

(
∂Vi

∂t , Vi
)
Vi,

Proof. To calculate ∂V1

∂t , we need to differentiate the flows of α with respect to t.

When i ∈ {2, . . . , 6}, for ∂Vi

∂t we use

(3.12) g (V1, Vi) = 0.

Differentiating the expression (3.12) with respect to t, the following expression is
found:

(3.13) g
(
∂V1

∂t , Vi
)

+ g
(
V1,

∂Vi

∂t

)
= 0.

Substituting the expression (3.10) into the expression (3.13) gives the following
result

(3.14) g
(
∂V1

∂t , Vi
)

= ε1

[
∂fi
∂s + fi−1κi−1 − εi−1εiκifi+1

]
.

�

Theorem 3.4. Necessary and sufficient conditions for the non-null curves flow to
be inextensible are the following system of the partial differential equations

(3.15)

∂κ1

∂t = ∂2f2
∂s2 + ε0ε1κ

2
1f2 + ∂κ1

∂s f1 − ε1ε2
∂κ2

∂s f3 − 2ε1ε2κ2
∂f3
∂s

−ε1ε2κ22f2 + ε1ε3κ2κ3f4,

∂κ2

∂t = ∂
∂sg

(
∂V2

∂t , V3
)
− ε2ε3κ3g

(
∂V2

∂t , V4
)

+ ε0ε1κ1
∂f3
∂s

+ε0ε1κ1κ2f2 − ε0ε1ε2ε3κ1κ3f4,

∂κ3

∂t = ∂
∂sg

(
∂V3

∂t , V4
)
− ε3ε4κ4g

(
∂V3

∂t , V5
)

+ ε1ε2κ2g
(
∂V2

∂t , V4
)
,

∂κ4

∂t = ∂
∂sg

(
∂V4

∂t , V5
)
− ε4ε5κ5g

(
∂V4

∂t , V6
)

+ ε2ε3κ3g
(
∂V3

∂t , V5
)
,

∂κ5

∂t = ∂
∂sg

(
∂V5

∂t , V6
)

+ ε3ε4κ4g
(
∂V4

∂t , V6
)
.
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Proof. Differentiating ∂V1

∂t with respect to s and using the expression (2.2) for i = 3
and (3.7), we find

(3.16)

∂
∂s

∂V1

∂t = V2

[
∂2f2
∂s2 + ∂f1

∂s κ1 + f1
∂κ1

∂s − ε1ε2f3
∂κ2

∂s

−ε1ε2 ∂f3∂s κ2 − ε1ε2
∂f3
∂s κ2 − ε1ε2κ

2
2f2 + ε1ε

2
2ε3κ2κ3f4

]
If we differentiate ∂V1

∂s with respect to t, then we get

(3.17) ∂
∂t
∂V1

∂s = ∂κ1

∂t V2 + κ1
∂V2

∂t .

Equalizing the expressions (3.16) and (3.17), the expression ∂κ1

∂t is obtained as in

(3.15). Differentiating ∂V2

∂t with respect to s and using the expressions (2.2) for
i = 4 and (3.10), then we reach

(3.18)

∂
∂s

∂V2

∂t = V3
[
∂
∂sg

(
∂V2

∂t , V3
)
− ε2ε3κ3g

(
∂V2

∂t , V4
)

+ε0ε1κ1
∂f2
∂s + ε0ε1κ1κ2f2 − ε0ε1ε2ε3κ1κ3f4

]
.

From the expression (2.2) for i = 2, then we have

(3.19) ∂
∂t
∂V2

∂s = −ε0ε1 ∂κ1

∂t V1 − ε0ε1κ1
∂V1

∂t + ∂κ2

∂t V3 + κ2
∂V3

∂t .

Using the expressions (3.18) and (3.19), we obtain the expression for ∂κ2

∂t in (3.15).

To calculate ∂κ3

∂t , we proceed as for ∂κ2

∂t with only the obvious changes to the

indices. Differentiating ∂V4

∂t with respect to s, we get the following:

(3.20) ∂
∂s

∂V4

∂t = V4
[
∂
∂sg

(
∂V4

∂t , V5
)
− ε4ε5κ5g

(
∂V4

∂t , V6
)

+ ε2ε3κ3g
(
∂V3

∂t , V5
)]
.

By the expression (2.2) for i = 4, then we have

(3.21) ∂
∂t
∂V4

∂s = −ε2ε3 ∂κ3

∂t V3 − ε2ε3κ3
∂V3

∂t + ∂κ4

∂t V5 + κ4
∂V5

∂t .

Equalizing the expressions (3.20) and (3.21), then gives ∂κ4

∂t . Using ∂
∂t
∂V5

∂s = ∂
∂s

∂V5

∂t ,

then we compute ∂κ5

∂t . �

4. Conclusion

In the present work, we investigated the circumstances of non-null curves flows
to be inextensible in Lorentzian 6-space L6. As an open problem, null curves can
also be characterized by researchers.
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