Characterization of Pseudo n-Jordan Homomorphisms

Abbas Zivari-Kazempour
Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran
e-mail: zivari@abru.ac.ir, zivari6526@gmail.com

AbStract. In this paper, among other things, we show that under special hypotheses every [pseudo] ($n+1$)-Jordan homomorphism is a [pseudo] n-Jordan homomorphism and vice versa.

1. Introduction

Let A and B be algebras, B be a right [left] A-module and let $\varphi: A \longrightarrow B$ be a linear map. Then φ is called a pseudo n-Jordan homomorphism if there exists an element $w \in A$ such that for all $a \in A$,

$$
\varphi\left(a^{n} w\right)=\varphi(a)^{n} \cdot w, \quad\left[\varphi\left(a^{n} w\right)=w \cdot \varphi(a)^{n}\right]
$$

The element w is called Jordan coefficient of φ. This concept was introduced and studied by Ebadian et al., in [4] and some interesting results related to these maps are given in [9]. If $n=2$, then φ is called simply a pseudo Jordan homomorphism.

Let A and B be Banach algebras and $\varphi: A \longrightarrow B$ be a linear map. Then φ is called an n-Jordan homomorphism if $\varphi\left(a^{n}\right)=\varphi(a)^{n}$, for all $a \in A$. This notion was introduced by Herstein in [7]. Also φ is called an n-homomorphism if $\varphi\left(\prod_{i=1}^{n} a_{i}\right)=\prod_{i=1}^{n} \varphi\left(a_{i}\right)$, for every $a_{i} \in A$, where $1 \leq i \leq n$. The concept of an n-homomorphism was studied for complex algebras in [6].

For the case $n=2$, this concepts coincides the classical definitions of Jordan homomorphism and homomorphism, respectively.

Clearly, every n-homomorphism is an n-Jordan homomorphism, but in general the converse is false. There are plenty of known examples of n-Jordan homomorphism which are not homomorphism. For example, it is proved in [8] that some Jordan homomorphism on the polynomial rings can not be homomorphism.

The following result is due to Zelazko [11], concerning the characterization of Jordan homomorphisms.

[^0]Theorem 1.1. Each Jordan homomorphism φ from Banach algebra A into a semisimple commutative Banach algebra B is a homomorphism.
This result has been proved by the author in [12] for 3-Jordan homomorphism with the extra condition that the Banach algebra A is unital, and then it is extended for all $n \in \mathbb{N}$ in [1]. For nonunital Banach algebra A, Bodaghi and İnceboz in [3], extended Theorem 1.1 for $n \in\{3,4\}$ by considering an extra condition on the mapping $\varphi: A \longrightarrow B$ as

$$
\varphi\left(a^{2} b\right)=\varphi\left(b a^{2}\right), \quad a, b \in A
$$

Also based on the property of the Vandermonde matrix, they proved in [2] that every n-Jordan homomorphism between two commutative Banach algebras is an n-homomorphism where n is an arbitrary and fixed positive integer.

Obviously, every n-Jordan homomorphism from unital Banach algebra A into B which is unitary Banach A-module is a pseudo n-Jordan homomorphism.
Example 1.2. Let

$$
A=\left\{\left[\begin{array}{cccc}
0 & x & a & b \\
0 & 0 & y & c \\
0 & 0 & 0 & z \\
0 & 0 & 0 & 0
\end{array}\right]: \quad x, y, z, a, b, c \in \mathbb{R}\right\}
$$

and define $\varphi: A \longrightarrow A$ via

$$
\varphi\left(\left[\begin{array}{llll}
0 & x & a & b \\
0 & 0 & y & c \\
0 & 0 & 0 & z \\
0 & 0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{llll}
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Then, $\varphi\left(u^{n}\right)=\varphi(u)^{n}$ for all $u \in A$ and for $n \geq 4$. Therefore, φ is an n-Jordan homomorphism, but $\varphi\left(u^{3}\right) \neq \varphi(u)^{3}$, for all $u \in A$, where $x, y, z \neq 0$. Hence, φ is not 3 -Jordan homomorphism. Set

$$
w=\left[\begin{array}{cccc}
0 & \alpha & s & t \\
0 & 0 & \beta & r \\
0 & 0 & 0 & \gamma \\
0 & 0 & 0 & 0
\end{array}\right]
$$

where $\gamma \neq 0$. Then φ is a pseudo 3-Jordan homomorphism with the Jordan coefficient w, but it is not a pseudo Jordan homomorphism.
Example 1.3. Let

$$
A=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]: a, b \in \mathbb{R}\right\}
$$

and let $\varphi, \psi: A \longrightarrow A$ be a linear map defined by

$$
\varphi\left(\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\right)=\left[\begin{array}{cc}
-a & 0 \\
0 & -b
\end{array}\right], \quad \psi\left(\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\right)=\left[\begin{array}{cc}
-b & 0 \\
0 & -a
\end{array}\right]
$$

Then φ is a 3-Jordan homomorphism, but it is not 4-Jordan homomorphism. Also, ψ is a pseudo Jordan homomorphism with the Jordan coefficient $w=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, but it is not a pseudo 3-Jordan homomorphism.

We mention that for all $n \in \mathbb{N}, \varphi$ is a $(2 n+1)$-Jordan homomorphism, but it is not a $(2 n)$-Jordan homomorphism. Similarly, ψ is a pseudo ($2 n$)-Jordan homomorphism, but it is not a pseudo $(2 n+1)$-Jordan homomorphism.

By Examples 1.2 and 1.3, we see that neither [pseudo] n-Jordan homomorphisms are necessarily [pseudo] $(n+1)$-Jordan homomorphisms nor [pseudo] $(n+1)$-Jordan homomorphisms are automatically [pseudo] n-Jordan homomorphisms.

However, each Jordan homomorphism is an n-Jordan homomorphism [10], but the same is false for $n \geq 3$. That is, in general every n-Jordan homomorphism is not m-Jordan homomorphism, where $m>n \geq 3$. Now the following questions can be raised.

Under which conditions between Banach algebras is any n-Jordan homomorphism automatically an $(n+1)$-Jordan homomorphism and vice versa?

Moreover, when the same is true for pseudo n-Jordan homomorphisms? In this paper, under some conditions, we characterize this fact by proving that every [pseudo] ($n+1$)-Jordan homomorphism, [pseudo] n-Jordan homomorphism and [pseudo] Jordan homomorphism are equivalent.

2. Pseudo n-Jordan Homomorphisms

The next result is [4, Theorem 2.3], concerning the characterization of pseudo n-Jordan homomorphisms.

Theorem 2.1. Let A and B be Banach algebras, A be unital and B be a right A-module. Let $\varphi: A \longrightarrow B$ be a continuous pseudo n-Jordan homomorphism with a Jordan coefficient w. If $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in A$ with $a b=w$, then φ is a pseudo $(n+1)$-Jordan homomorphism and $\varphi(a w)=\varphi(a) \varphi(w)$.

Unfortunately, there is an error in the proof of Theorem 2.1. Indeed, the first summation $\sum_{n=1}^{\infty} \lambda^{n} \varphi\left(a^{n} w\right)$ in line 8 of the proof must be $\varphi\left(e_{A}\right) \sum_{n=1}^{\infty} \lambda^{n} \varphi\left(a^{n} w\right)$, and hence [4, Corollary 2.4, Corollary 2.5] are incorrect. This error resolved by Ebadian et al., in [5] with the extra conditions that the Banach algebra B is unital, and $\varphi\left(e_{A}\right)=e_{B}$, i.e., φ is unital.

Next we improve this result as follows.
Theorem 2.2. Let A and B be Banach algebras, A be unital and B be a right A-module. Let $\varphi: A \longrightarrow B$ be a continuous pseudo n-Jordan homomorphism with a Jordan coefficient w. If $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in A$ with $a b=w$, then φ is a pseudo $(n+1)$-Jordan homomorphism which multiplied by $\varphi(w)$.
Proof. Let $a \in A$ be arbitrary. For $\lambda \in \mathbb{C}$, with $|\lambda|<1 /\|a\|, e_{A}-\lambda a$ is invertible
and $\left(e_{A}-\lambda a\right)^{-1}=\sum_{n=0}^{\infty} \lambda^{n} a^{n}$. Then

$$
\begin{aligned}
\varphi(w) & =\varphi\left(\left(e_{A}-\lambda a\right)\left(e_{A}-\lambda a\right)^{-1} w\right) \\
& =\varphi\left(e_{A}-\lambda a\right) \varphi\left(\left(e_{A}-\lambda a\right)^{-1} w\right) \\
& =\left(\varphi\left(e_{A}\right)-\lambda \varphi(a)\right) \varphi\left(\sum_{n=0}^{\infty} \lambda^{n} a^{n} w\right) \\
& =\varphi\left(e_{A}\right) \varphi(w)+\varphi\left(e_{A}\right) \varphi\left(\sum_{n=1}^{\infty} \lambda^{n} a^{n} w\right)-\lambda \varphi(a) \varphi\left(\sum_{n=0}^{\infty} \lambda^{n} a^{n} w\right) \\
& =\varphi(w)+\varphi\left(e_{A}\right) \sum_{n=1}^{\infty} \lambda^{n} \varphi\left(a^{n} w\right)-\lambda \varphi(a) \sum_{n=0}^{\infty} \lambda^{n} \varphi\left(a^{n} w\right) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\varphi\left(e_{A}\right) \sum_{n=1}^{\infty} \lambda^{n} \varphi\left(a^{n} w\right)-\lambda \varphi(a) \sum_{n=0}^{\infty} \lambda^{n} \varphi\left(a^{n} w\right)=0 \tag{2.1}
\end{equation*}
$$

Multiplying $\varphi(w)$ from the left in (2.1) and using $\varphi(w)=\varphi(w) \varphi\left(e_{A}\right)$, we get

$$
\varphi(w) \sum_{n=0}^{\infty} \lambda^{n+1} \varphi\left(a^{n+1} w\right)-\varphi(w) \sum_{n=0}^{\infty} \lambda^{n+1} \varphi(a) \varphi\left(a^{n} w\right)=0
$$

Thus,

$$
\varphi(w) \sum_{n=0}^{\infty} \lambda^{n+1}\left[\varphi\left(a^{n+1} w\right)-\varphi(a) \varphi\left(a^{n} w\right)\right]=0
$$

for all scalars $\lambda \in \mathbb{C}$, with $|\lambda|<1 /\|a\|$. Therefore $\varphi(w) \varphi\left(a^{n+1} w\right)=\varphi(w) \varphi(a) \varphi\left(a^{n} w\right)$ for $n=0,1,2, \cdots$. Since φ is a pseudo n-Jordan homomorphism, we obtain

$$
\varphi(w) \varphi(a) \varphi\left(a^{n} w\right)=\varphi(w) \varphi(a) \varphi(a)^{n} \cdot w=\varphi(w) \varphi(a)^{n+1} \cdot w
$$

Consequently, $\varphi(w) \varphi\left(a^{n+1} w\right)=\varphi(w) \varphi(a)^{n+1} \cdot w$, for all $a \in A$. This finishes the proof.

We say that $w \in A$ is a left (right) separating point of Banach A-module M if the condition $w x=0(x w=0)$ for $x \in M$ implies that $x=0$.

As a consequence of Theorem 2.2, we have the next results.
Corollary 2.3. With the same hypotheses as in Theorem 2.2, if $\varphi(w)$ is a left separating point of B, then φ is a pseudo $(n+1)$-Jordan homomorphism and $\varphi(a w)=\varphi(a) \varphi(w)$.

Corollary 2.4. With the same hypotheses as in Theorem 2.2, if B is unital and $\varphi(w)=e_{B}$, then φ is a pseudo $(n+1)$-Jordan homomorphism and $\varphi(a w)=\varphi(a) \varphi(w)$.

Now we give an examples which provided that the condition $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in A$ with $a b=w$, in Corollary 2.3 and Corollary 2.4 are essentiall.

Example $2.5(i)$ Let A, ψ and w be as in Example 1.3. Set

$$
a=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right], \quad b=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] .
$$

Then $a b=w$, but $\psi(a b) \neq \psi(a) \psi(b)$. On the other hand, $\psi(w)=w$ is a left separating point of A and ψ is a pseudo Jordan homomorphism with a Jordan coefficient w, but it is not a pseudo 3-Jordan homomorphism.
(ii) Suppose that

$$
u=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Then $\psi(u)=e_{A}$ and ψ is a pseudo 3-Jordan homomorphism with u as a Jordan coefficient, but it is not a pseudo 4-Jordan homomorphism, because the condition $\psi(a b)=\psi(a) \psi(b)$ for all $a, b \in A$ with $a b=u$ is not holds.

Corollary 2.6. Let A and B be unital Banach algebras and B be a right A-module. Suppose that $\varphi: A \longrightarrow B$ is a continuous unital n-Jordan homomorphism. If $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in A$ with $a b=e_{A}$, then φ is an $(n+1)$-Jordan homomorphism.

Lemma 2.7.[10, Lemma 6.3.2] Every Jordan homomorphism φ between Banach algebras A and B is an n-Jordan homomorphism, for $n \geq 2$.

The next result is [13, Theorem 2.7], which has been proved for $n=2,3$, and it was claimed that the result can be established for $n \geq 4$ by a similar discussion. Recently, in [14, Theorem 2.11] the author presented a short proof for the general case $n \in \mathbb{N}$.

Theorem 2.8. Every unital $(n+1)$-Jordan homomorphism $\varphi: A \longrightarrow B$ is an n-Jordan homomorphism.

Combing Lemma 2.7, Theorem 2.8 and [13, Corollary 2.8], we get the following result.

Corollary 2.9. Let A and B be unital Banach algebras and let $\varphi: A \longrightarrow B$ be a unital linear map. Then the following conditions are equivalent.
(i) φ is a Jordan homomorphism.
(ii) φ is an n-Jordan homomorphism.
(iii) φ is an $(n+1)$-Jordan homomorphism.

The following result is an analogues of Theorem 2.8 for pseudo n-Jordan homomorphisms.

Theorem 2.10.([9, Theorem 3.4]) Let A and B be unital Banach algebras, and B be a right A-module. Then every unital pseudo $(n+1)$-Jordan homomorphism $\varphi: A \longrightarrow B$ with a Jordan coefficient w is a pseudo n-Jordan homomorphism.
Theorem 2.11. Let A and B be two unital Banach algebras, and let B be a right A-module. Let $\varphi: A \longrightarrow B$ be a unital linear map and w be a right separating point of B, then the following conditions are equivalent.
(i) φ is a pseudo Jordan homomorphism.
(ii) φ is a pseudo n-Jordan homomorphism.
(iii) φ is a pseudo $(n+1)$-Jordan homomorphism.

Proof. (iii) $\Longrightarrow($ ii $)$ and $(i i) \Longrightarrow(i)$ follows from Theorem 2.10. $\quad(i) \Longrightarrow$ (iii) Assume that φ is a pseudo Jordan homomorphism, then

$$
\begin{equation*}
\varphi\left(a^{2} w\right)=\varphi(a)^{2} \cdot w, \quad a \in A \tag{2}
\end{equation*}
$$

Replacing a by $a+e_{A}$ we get $\varphi(a w)=\varphi(a) \cdot w$, for all $a \in A$. Thus,

$$
\begin{equation*}
\varphi\left(a^{2} w\right)=\varphi\left(a^{2}\right) \cdot w \tag{3}
\end{equation*}
$$

It follows from (2) and (3) that $\left(\varphi\left(a^{2}\right)-\varphi(a)^{2}\right) \cdot w=0$. As w is a right separating point of B, we get $\varphi\left(a^{2}\right)=\varphi(a)^{2}$, and hence φ is a Jordan homomorphism. From Lemma 2.7, we conclude that φ is an ($n+1$)-Jordan homomorphism. Thus,

$$
\varphi\left(a^{n+1} w\right)=\varphi\left(a^{n+1}\right) \cdot w=\varphi(a)^{n+1} \cdot w
$$

Consequently, φ is a pseudo $(n+1)$-Jordan homomorphism.
We mention that the continuity of φ in [4, Proposition 2.11] is extra and must be omitted. Also by applying [2, Theorem 2.2], we obtain the following extension of [4, Proposition 2.11].

Theorem 2.12. Let A and B be commutative algebras and B be a right A-module. Let $\varphi: A \longrightarrow B$ be a pseudo n-Jordan homomorphism with a Jordan coefficient w such that w is a right separating point of B. If $\varphi(a w)=\varphi(a) \cdot w$ for each $a \in A$, then φ is an n-Jordan homomorphism, and therefore, it is an n-homomorphism.
Proposition 2.13 Let A and B be two unital Banach algebras, and B be a right A-module. Suppose that $\varphi: A \longrightarrow B$ is a unital pseudo n-Jordan homomorphism with a Jordan coefficient w. Then for all $a \in A$ and $1 \leq k \leq n-1$,

$$
\varphi\left(a^{k} w\right)=\varphi(a)^{k} \cdot w
$$

Proof. Let $\lambda \in \mathbb{C}$ be arbitrary. By the assumption we have

$$
\begin{equation*}
\varphi\left(\left(a+\lambda e_{A}\right)^{n} w\right)=\varphi\left(a+\lambda e_{A}\right)^{n} \cdot w \tag{4}
\end{equation*}
$$

for all $a \in A$. It follows from the equality (4) that

$$
\sum_{k=1}^{n-1} \lambda^{n-k}\binom{n}{k}\left[\varphi\left(a^{k} w\right)-\varphi(a)^{k} \cdot w\right]=0
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$. Hence we have $\left[\varphi\left(a^{k} w\right)-\varphi(a)^{k} \cdot w\right]=0$ for all $a \in A$. Thus, $\varphi\left(a^{k} w\right)=\varphi(a)^{k} \cdot w$ for all $1 \leq k \leq n-1$. In particular, $\varphi(a w)=\varphi(a) \cdot w$.

Corollary 2.14. Let A and B be unital Banach algebras and B be a right A bimodule. Suppose that $\varphi: A \longrightarrow B$ is a unital pseudo n-Jordan homomorphism with a Jordan coefficient w such that w is a right separating point of B. If
(i) A and B are commutative, or
(ii) B is semisimple and commutative,
then φ is an n-homomorphism.
Proof. If A and B are commutative, then the result follows from Theorem 2.12 and 2.13. Assume that (ii) holds. Then similar to the proof of Theorem 2.11 we conclude that φ is a Jordan homomorphism. Therefore, φ is a homomorphism by Theorem 1.1 and hence it is an n-homomorphism.

The product of two pseudo n-Jordan homomorphisms is not a pseudo n-Jordan homomorphism, in general. For example, let

$$
A=\left\{\left[\begin{array}{cc}
a & b \\
0 & 0
\end{array}\right]: a, b \in \mathbb{R}\right\}, \quad B=\left\{\left[\begin{array}{cc}
a & b \\
0 & c
\end{array}\right]: a, b, c \in \mathbb{R}\right\}
$$

and define $\varphi, \psi: A \longrightarrow B$ by

$$
\varphi\left(\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
a & -b \\
0 & 0
\end{array}\right], \quad \psi\left(\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] .
$$

Then it is routine to check that φ and ψ are pseudo n-Jordan homomorphism with the Jordan coefficient $w=\left[\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right]$, while $h: A \longrightarrow B$ via $h(x)=\varphi(x) \psi(x)$ is not a pseudo n-Jordan homomorphism with the Jordan coefficient w.

However, if $\varphi, \psi: A \longrightarrow A$ are pseudo n-Jordan homomorphism with the Jordan coefficient w, A is commutative and w is an idempotent in A, then $h: A \longrightarrow A$ defined by $h(x)=\varphi(x) \psi(x)$ is a pseudo n-Jordan homomorphism with the Jordan coefficient w.

Acknowledgments. The author would like to thank the referees for proving valuable comments and helping in improving the content of this paper.

References

[1] G. An, Characterization of n-Jordan homomorphism, Linear Multi. Algebra, 66(4)(2018), 671-680.
[2] A. Bodaghi and H. İnceboz, n-Jordan homomorphisms on commutative algebras, Acta. Math. Univ. Comenianae., 87(1)(2018), 141-146.
[3] A. Bodaghi and H. İnceboz, Extension of Zelazko's theorem to n-Jordan homomorphisms, Adv. Pure. Appl. Math., 10(2)(2019), 165-170.
[4] A. Ebadian, A. Jabbari and N. Kanzi, n-Jordan homomorphisms and Pseudo nJordan homomorphisms on Banach algebras, Mediterr. J. Math., 14(241)(2017), 111.
[5] A. Ebadian, M. Eshaghi Gordji and A. Jabbari, Pseudo n-Jordan homomorphisms and pseudo n-homomorphisms on Banach algebras, Honam Math. J., 42(2)(2020), 411-423.
[6] Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc., 31(1)(2005), 13-23.
[7] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc., 81(1)(1956), 331341.
[8] N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc., 69(3)(1950), 479-502.
[9] M. Neghabi, A. Bodaghi and A. Zivari Kazempour, Characterization of mixed n-Jordan homomorphisms and pseudo n-Jordan homomorphisms, Filomat, 34(6)(2020), 1989-2002.
[10] T. Palmer, Banach algebras and the general theory of *-algebras. Vol I, Cambridge: Univ Press, (1994).
[11] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math., 30(1968), 83-85.
[12] A. Zivari-Kazempour, A characterization of 3-Jordan homomorphism on Banach algebras, Bull. Aust. Math. Soc., 93(2)(2016), 301-306.
[13] A. Zivari-Kazempour, Automatic continuity of n-Jordan homomorphisms on Banach algebras, Commun. Korean Math. Soc., 33(1)(2018), 165-170.
[14] A. Zivari-Kazempour, Characterization of n-Jordan homomorphisms and automatic continuity of 3-Jordan homomorphisms on Banach algebras, Iran J. Sci. Technol. Trans. Sci., 44(2020), 213-218.

[^0]: Received March 29, 2020; revised June 22, 2021; accepted July 6, 2021. 2010 Mathematics Subject Classification: 47B48; 46H40.
 Key words and phrases: Pseudo n-Jordan homomorphism, n-Jordan homomorphism, right separating point.

