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Abstract. The fundamental goal of this paper is to investigate some inequalities in-

volving the special beta function in n variables. Our theoretical results obtained here are

extensions and refinements for some inequalities already discussed in the literature.

1. Introduction

Let C+ :=
{

z ∈ C : ℜe(z) > 0
}

. The celebrated Euler’s Beta and Gamma
functions are, respectively, defined by

∀x, y ∈ C+ B(x, y) :=

∫ 1

0

tx−1(1− t)y−1dt

∀x ∈ C+ Γ(x) :=

∫ +∞

0

e−ttx−1dt.

The functions B and Γ, which play a central and primordial place in some
different areas of mathematics, are useful from the theoretical point of view as well
as for practical purposes. In this introductive section, we will restrict ourselves to
recall some properties of B and Γ that will be needed throughout this paper.

One of the most elementary properties, expressing a connection between B and
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Γ, is the following relationship

(1.1) ∀x, y ∈ C+ B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

It is also well-known that

(1.2) ∀x ∈ C+ Γ(x+ 1) = xΓ(x).

It is worth mentioning that (1.2) has many consequences and applications. First,
(1.2) implies that Γ(n+1) = n! for any integer n ≥ 0 and so, Γ(x) can be considered
as an extension of the factorial function from positive integers to x ∈ C+. Secondly,
(1.2) implies that

Γ(x) =
Γ(x+ 1)

x
=

Γ(x+ 2)

x(x + 1)
=

Γ(x+ 3)

x(x+ 1)(x+ 2)
= ...,

which tells us that Γ(x), previously defined for x ∈ C+, can be extended for any
x ∈ C such that x 6= 0,−1,−2, .... This, with (1.1), implies that B(x, y) previ-
ously defined for x, y ∈ C+ can be in its turn extended for any x, y ∈ C such that
x, y, x + y 6= 0,−1,−2, .... For more details and information about the preceding
discussion as well as for further properties and applications of B and Γ, we refer
the interested reader to [2, 3, 4, 5, 6, 10, 11, 12] for instance.

This paper will be organized as follows: after this short introduction, Section 2
is devoted to recall the definition as well as the elementary properties of the beta
function in n variables that will be needed throughout this paper. Section 3 is
focused to investigate some inequalities involving the beta function in n variables,
denoted by Bn(x1, x2, ..., xn), and such section is divided into three subsections. The
two first subsections are devoted to give some upper bounds for Bn(x1, x2, ..., xn)
when x1, x2, ..., xn ≥ 1 and x1, x2, ..., xn ∈ (0, 1], respectively. The third subsection
displays with some lower bounds of Bn(x1, x2, ..., xn) for any x1, x2, ..., xn > 0. Our
obtained inequalities are extensions and refinements for some inequalities already
discussed in the literature.

2. Beta Function in Three or More V ariables

For the sake of simplicity and clearness for the reader, we first present the
beta function in three variables and then that of n variables. We collect from the
literature the elementary properties of the beta function in n variables that will be
needed throughout this manuscript. For more details we refer the interested reader
to [1, 2, 6] and the related references cited therein.

2.1. Beta function with three variables

Let T be the standard triangle of R2 having e0 := (0, 0), e1 := (1, 0), e2 := (0, 1)
as vertices. In analytic form, T is defined by

T =
{

(t, s) : t ≥ 0, s ≥ 0, t+ s ≤ 1
}

.
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For any x, y, z ∈ C+, we set

(2.1) B3(x, y, z) :=

∫

T

tx−1sy−1
(

1− t− s
)z−1

dtds.

The integrand function of (2.1), namely (t, s) 7−→ tx−1sy−1(1 − t − s)z−1 for
(t, s) ∈ T , presents eventual singularities since it is not defined when at least one
of the three conditions ℜe(x) < 1, ℜe(y) < 1, ℜe(z) < 1 holds. This means that,
for this class of x, y, z the double integral in (2.1) is an improper integral and so,
its existence should be justified. We then must mention the following result.
Proposition 2.1. Let x, y, z ∈ C+. Then the integral of the right hand-side of

(2.1) is convergent. That is, (2.1) defines the map B3 from
(

C+

)3
into C.

It is obvious that B3(1, 1, 1) = area(T ) = 1/2. Now, we state the following
result which reduces the computation of B3 to that of B.
Proposition 2.2. For any x, y, z ∈ C+, the following relationship holds:

(2.2) B3(x, y, z) = B(y, z)B(x, y + z).

The formula (2.2) when combined with (1.1) immediately yields the following
result.
Corollary 2.3. The following relation

(2.3) B3(x, y, z) =
Γ(x)Γ(y)Γ(z)

Γ(x+ y + z)

holds for any x, y, z ∈ C+. As a consequence, B3(x, y, z) is symmetric in x, y, z.

2.2. Beta function in n variables

This subsection extends the preceding one. We need some notation. Let n ≥ 3
be an integer and let En−1 be the standard (n − 1)-dimensional simplex of Rn−1

defined by

En−1 =
{

(t1, t2, ..., tn−1) ∈ R
n−1 :

n−1
∑

i=1

ti ≤ 1; ti ≥ 0, for i = 1, 2, ..., n− 1
}

.

Let x1, x2, ..., xn ∈ C+, we define

(2.4) Bn

(

x1, x2, ..., xn

)

:=

∫

En−1

n
∏

i=1

txi−1
i dt1dt2...dtn−1,

where we set tn := 1−
∑n−1

i=1 ti.
For n = 2, the function B2 is exactly the classical beta function usually denoted

by B, notation that we conserve throughout the following. For n = 3 we are in the
situation of the preceding subsection.
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In a similar manner as for n = 3, we can prove a result that justifies the existence
of the integral in (2.4) which is improper for a class of x1, x2, ..., xn. Precisely, we
have the following.

Proposition 2.4. The map Bn given by (2.4) is well-defined from
(

C+

)n
into C.

It is well-known that Bn(1, 1, ..., 1) = V ol(En−1) = 1/(n−1)!, where V ol(En−1)
refers to the volume of En−1 for the Rn−1- Lebesgue measure.

Now, we are in the position to state the following result which gives an inter-
esting recursive relationship that reduces the computation of the beta function Bn

to those of Bn−1 and B.

Theorem 2.5. For any x1, x2, ..., xn ∈ C+ and n ≥ 3 there holds

(2.5) Bn

(

x1, x2, ..., xn

)

= Bn−1

(

x2, x3, ..., xn

)

B
(

x1,

n
∑

i=2

xi

)

.

Proof. We apply the celebrated Fubini’s theorem to the multiple integral in (2.4).
For a similar way, see Remark 3.8 below. 2

As we will see in the next section, the recursive relation (2.5) is useful for
extending many properties from the beta function with two variables to that of n
arguments. It can be also used for obtaining the following result.

Corollary 2.6. The following formula

(2.6) Bn

(

x1, x2, ..., xn

)

=

∏n
i=1 Γ(xi)

Γ
(

σ(x)
)

holds for any x1, x2, ..., xn ∈ C+, where we set σ(x) =:
∑n

i=1 xi. So, Bn

(

x1, x2, ..., xn

)

is symmetric in x1, x2, ..., xn.

From (2.6) we can immediately deduce some other properties for the function
Bn. As examples, the following relationships

Bn

(

x1 + 1, x2, ..., xn

)

+Bn

(

x1, x2 + 1, ..., xn

)

+ ...

+Bn

(

x1, x2, ..., xn + 1
)

= B
(

x1, x2, ..., xn

)

,

Bn

(

x1, x2, ..., xn

)

= Bn−m

(

xm+1, xm+2, ..., xn

)

Bm+1

(

x1, x2, ..., xm,
n
∑

i=m+1

xi

)

hold for any x1, x2, ..., xn ∈ C+ and any integers n ≥ 2,m ≥ 1 such that n ≥ m+2.
We end this section by stating the following remark which may be useful for

the reader.

Remark 2.7. (i) As for n = 2, we can give an expression of Bn(x1, x2, ..., xn) in
terms of the spherical coordinates in n-dimension. We omit all detail about this
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latter point, since it will not be needed in the sequel.
(ii) From (2.5) we can deduce, by a simple mathematical induction, that the fol-
lowing equality

Bn

(

x1, x2, ..., xn

)

=

n
∏

k=2

B
(

k−1
∑

i=1

xi, xk

)

holds for any x1, x2, ..., xn ∈ C+ and n ≥ 3.

3. Inequalities Involving Bn

This section deals with some inequalities for the beta function in n variables.
In the literature we can find a lot of inequalities involving the beta function in two
variables, see [1, 6, 7, 8, 9] and the related references cited therein. However, to
find inequalities involving the function Bn for n ≥ 3 seems to be difficult.

In [1], H. Alzer proved that the inequalities

(3.1) 0 <
1

∏n
i=1 xi

−Bn(x1, x2, ..., xn) ≤ 1− 1

(n− 1)!

hold for any integer n ≥ 3 and any x1, x2, ..., xn ≥ 1. Further he established there
that the extreme bounds 0 and 1 − 1/(n − 1)! of (3.1) can not be improved. The
right inequality in (3.1) is not valid for n = 2. However, the left inequality of (3.1)
is valid for n = 2 as already obtained by S.S. Dragomir et al. in [7], i.e.

(3.2) ∀x, y ≥ 1 B(x, y) ≤ 1

xy
.

3.1. Upper bounds for Bn(x1, x2, ..., xn) when x1, x2, ..., xn ≥ 1.
In what follows we will give a refinement of the left inequality in (3.1) with a

short proof. Precisely, the following theorem which is our first main result may be
stated.

Theorem 3.1. For any n ≥ 3 and x1, x2, ..., xn ≥ 1 we have

(3.3) Bn(x1, x2, ..., xn) ≤
1

(n− 2)!

1
(
∏n

i=1 xi

)(
∑n

i=2 xi

)

≤ 1

(n− 1)!
(
∏n

i=1 xi

) <
1

∏n
i=1 xi

.

Further, the coefficients 1/(n− 2)! and 1/(n− 1)! in (3.3) are sharp.

Proof. The two right inequalities in (3.3) are obvious. To prove the left inequality
in (3.3) we will use a mathematical induction. For n = 3, we have by (2.2) and
(3.2)

B3(x1, x2, x3) = B(x2, x3)B(x1, x2+x3) ≤
1

x2x3

1

x1(x2 + x3)
≤ 1

2x1x2x3
<

1

x1x2x3
.
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Assume that (3.3) is true for n−1. According to (2.5), with (3.2) and the recurrence
hypothesis, we have

Bn

(

x1, x2, ..., xn

)

= Bn−1

(

x2, x3, ..., xn

)

B
(

x1,
n
∑

i=2

xi

)

≤ 1

(n− 3)!

1
(
∏n

i=2 xi

)(
∑n−1

i=2 xi

)

1

x1

(
∑n

i=2 xi

) .

This, with the fact that
∑n−1

i=2 xi ≥ n− 2, yields

Bn

(

x1, x2, ..., xn

)

≤ 1
(
∏n

i=1 xi

)(
∑n

i=2 xi

)

1

(n− 3)!
(
∑n−1

i=2 xi

)

≤ 1

(n− 2)!
(
∏n

i=1 xi

)(
∑n

i=2 xi

) .

The desired result is so proved. If we take x1 = x2 = ... = xn = 1 then the two left
inequalities of (3.3) are reduced to an equality. This implies that the coefficients
1/(n− 2)! and 1/(n− 1)! in (3.3) can not be improved. 2

As a consequence of the previous theorem we have the following corollary which,
in its turn, gives a refinement of the left inequality in (3.3).

Corollary 3.2. For any n ≥ 3 and x1, x2, ..., xn ≥ 1 there holds

(3.4) Bn(x1, x2, ..., xn) ≤
1

(n− 2)!

1
(
∏n

i=1 xi

)

1

sn(x1, x2, ..., xn)
,

where we set

sn(x1, x2, ..., xn) := max
1≤k≤n

(

n
∑

i=1,i6=k

xi

)

.

In particular, for any x ≥ 1 real number and n ≥ 3 we have

(3.5) Bn(x, x, ..., x) ≤
1

(n− 1)!

1

xn+1
.

Proof. By (3.3) with the fact that B(x1, x2, ..., xn) is symmetric in x1, x2, .., xn

we immediately deduce (3.4) after simple manipulations. The fact that the left
inequality in (3.4) gives a refinement of that in (3.3) is immediate. The details are
straightforward and therefore omitted here. 2

Remark 3.3. (i) The left inequality in (3.3), and so that in (3.4), is not valid for
n = 2. That is, the inequality B(x, y) ≤ 1/xy2 does not hold for any x, y ≥ 1.
Indeed, if we take x = 1, y = 2 we obtain B(1, 2) = 1/2 > 1/4.
(ii) Throughout the following, we will adopt as usual the equality 00 = 1, for the
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sake of convenience and simplicity. Such convention is legitime by virtue of the
equality limx↓0 x

x = 1.

In order to give more inequalities about the beta function Bn, we need to state
the following lemma.

Lemma 3.4. Let a, b, c ≥ 0 with c ≤ 1. Then one has

(3.6) sup
0≤t≤1−c

ta
(

1− t− c
)b

=
aabb(1 − c)a+b

(a+ b)a+b
.

Consequently, we have

(3.7)

∫ 1−c

0

ta(1− t− c)bdt ≤ aabb(1− c)a+b+1

(a+ b)a+b
.

Proof. If a = 0 or b = 0 or c = 1, (3.6) is trivial. Assume that a > 0, b > 0 and
0 ≤ c < 1. It is easy to see that

ta
(

1− t− c
)b

= (1 − c)a+bua(1− u)b, with u :=
t

1− c
, 0 ≤ u < 1.

It is then enough to study the following function

Φ(u) := ua(1 − u)b, 0 ≤ u < 1.

Clearly, Φ(0) = Φ(1) = 0. Simple computation leads to

Φ
′

(u) = ua−1(1 − u)b−1
(

a− (a+ b)u
)

.

We then deduce that Φ is increasing for u ∈ [0, a/(a + b)] and decreasing for u ∈
[a/(a+ b), 1). It follows that Φ presents a maximum at u = a/(a+ b) ∈ (0, 1), with

sup
0≤u<1

Φ(u) = Φ(a/(a+ b)) =
( a

a+ b

)a( b

a+ b

)b

=
aabb

(a+ b)a+b
.

The proof of (3.6) is finished and then (3.7) follows. 2

After this, the following result may be stated.
Proposition 3.5. Let x, y ≥ 1. Then we have

(3.8) B(x, y) ≤ (x − 1)x−1(y − 1)y−1

(x+ y − 2)x+y−2
.

Proof. Follows from (3.6) with a = x − 1, b = y − 1, c = 0, and the definition of
the beta function B. 2
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Remark 3.6. (i) Numeric experiments show that neither (3.2) nor (3.8) is uni-
formly better than the other. The following items explain this claim:

• If we take x = y = 3/2 then (3.2) and (3.8) give B(3/2, 3/2) ≤ 4/9 and
B(3/2, 3/2) ≤ 1/2, respectively, with 4/9 < 1/2.

• If we take x = y = 3 then (3.2) and (3.8) imply that B(3, 3) ≤ 1/9 and
B(3, 3) ≤ 1/16, respectively, with 1/9 > 1/16.
(ii) It is easy to check that if x = y ≥ 2 then (3.8) is better than (3.2). We conjecture
that, if x, y ≥ 2 then (3.8) refines (3.2).

The following result gives an inequality involving Bn in a recursive manner.

Proposition 3.7. Let x1, x2, ..., xn ≥ 1 and n ≥ 3. Then the following inequality

(3.9) Bn

(

x1, x2, ..., xn−1, xn

)

≤ (xi − 1)xi−1(xn − 1)xn−1

(

xi + xn − 2
)xi+xn−2 Bn−1

(

x1, x2, ..., xi−1, xi+1, ..., xn−1, xi + xn

)

holds for any i = 1, 2, ..., n− 1. In particular, for any real number x ≥ 1 and n ≥ 3
we have

(3.10) Bn(x, x, ..., x)

≤ (x− 1)2x−2

4(n−3)(x−1)

(

(n− 2)x− 1
)(n−2)x−1

(

(n− 1)x− 2
)(n−1)x−2

(

(n− 1)x− 1
)(n−1)x−1

(

nx− 2
)nx−2 .

Proof. By virtue of the symmetric character of Bn(x1, x2, ..., xn), it is enough to
prove (3.9) for i = 1. According to (2.6) we can easily check that

Bn(x1, x2, ..., xn) = Bn−1(x2, x3, ..., xn−1, x1 + xn)B(x1, xn).

This, with (3.8), immediately yields (3.9). The inequality (3.10) follows from (3.9)
after a simple mathematical induction. 2

Remark 3.8. The previous result can be also shown in the following way. By (2.4)
with the Fubini’s theorem we can write

(3.11) Bn

(

x1, x2, ..., xn

)

=

∫

En−2

(

∫ 1−tn

0

tx1−1
1 txn−1

n dt1

)

tx2−1
2 tx3−1

3 ...t
xn−1−1
n−1 dt2dt3...dtn−1,

where we set tn := 1− t1 − t2 − ...− tn−1 and tn := t2 + t3 + ...+ tn−1 for the sake
of simplicity. According to (3.7) we have

∫ 1−tn

0

tx1−1
1 txn−1

n dt1 ≤ (x1 − 1)x1−1(xn − 1)xn−1

(

x1 + xn − 2
)x1+xn−2

(

1− tn
)x1+xn−1

.
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Substituting this in (3.11), with tn = t2+t3+ ...+tn−1 and again by (2.4) we obtain
(3.9).

The previous theorem gives a recursive inequality involving Bn and Bn−1. The
following example explains the use of such inequality.

Example 3.9. Take n = 3. Simple manipulations lead to

B3(x1, x2, x3) ≤
(x1 − 1)x1−1(x2 − 1)x2−1(x3 − 1)x3−1

(x1 + x2 + x3 − 2)x1+x2+x3−2

(x1 + x3 − 1)x1+x3−1

(x1 + x3 − 2)x1+x3−2
.

This, with the fact that B3(x1, x2, x3) is symmetric in x1, x2, x3 allows us to obtain

(3.12) B3(x1, x2, x3) ≤
(x1 − 1)x1−1(x2 − 1)x2−1(x3 − 1)x3−1

(x1 + x2 + x3 − 2)x1+x2+x3−2
C(x1, x2, x3),

where we set

C(x1, x2, x3) := min
{ (x1 + x2 − 1)x1+x2−1

(x1 + x2 − 2)x1+x2−2
,
(x1 + x3 − 1)x1+x3−1

(x1 + x3 − 2)x1+x3−2

,
(x2 + x3 − 1)x2+x3−1

(x2 + x3 − 2)x2+x3−2

}

.

In particular, for any x ≥ 1 one has

(3.13) B3(x, x, x) ≤
(x− 1)x−1

4x−1

(2x− 1)2x−1

(3x− 2)3x−2
.

Now, a question arises from the above: does (3.8) have an analog for n variables.
The following result answers positively this latter question.

Theorem 3.10. Let x1, x2, ..., xn ≥ 1 and n ≥ 2. Then we have

(3.14) Bn

(

x1, x2, ..., xn

)

≤ 1

(n− 1)!

∏n
i=1

(

xi − 1
)xi−1

(

∑n
i=1 xi − n

)

∑
n

i=1
xi−n

.

Further, the coefficient 1/(n − 1)! in (3.14) is sharp. In particular, for any real

number x ≥ 1 one has

(3.15) Bn(x, x, ..., x) ≤
1

(n− 1)!

1

nn(x−1)
.

Proof. Let x1, x2, ..., xn ≥ 1 be fixed. The map

(t1, t2, ..., tn−1) 7−→ tx1−1
1 tx2−1

2 ...t
xn−1−1
n−1

(

1− t1 − t2 − ...− tn−1

)xn−1
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is continuous on the compact En−1 of Rn−1. So, it is bounded in En−1 and its
supremum, i.e.

Sn(x1, x2, ..., xn) := sup
(t1,...,tn−1)∈En−1

tx1−1
1 tx2−1

2 ...t
xn−1−1
n−1

(

1− t1− t2− ...− tn−1

)xn−1

exists. We will compute Sn(x1, x2, ..., xn) in a recursive manner. If we put

S1
n

(

t2, t3, ..., tn−1

)

:= sup
0≤t1≤1−t2−...−tn−1

tx1−1
1

(

1− t1 − ...− tn−1

)xn−1

then it is clear that

Sn(x1, x2, ..., xn) = sup
(t2,...,tn−1)∈En−2

tx2−1
2 ...t

xn−1−1
n−1 S1

n

(

t2, t3, ..., tn−1

)

.

Following (3.6) we have

S1
n

(

t2, t3, ..., tn−1

)

=
(x1 − 1)x1−1(xn − 1)xn−1

(

1− t2 − ...− tn−1

)x1+xn−2

(x1 + xn − 2)x1+xn−2
.

Summarizing, the following recursive relationship

Sn(x1, x2, ..., xn) =
(x1 − 1)x1−1(xn − 1)xn−1

(x1 + xn − 2)x1+xn−2
Sn−1(x2, ..., xn−1, x1 + xn − 1)

holds for any x1, x2, ..., xn ≥ 1 and n ≥ 2. By a simple mathematical induction we
show that

Sn(x1, x2, ..., xn) =

∏n
i=1

(

xi − 1
)xi−1

(

∑n
i=1 xi − n

)

∑
n

i=1
xi−n

.

This, with the definition of Sn(x1, x2, ..., xn), implies that the inequality

(3.16) tx1−1
1 tx2−1

2 ...t
xn−1−1
n−1

(

1− t1 − t2 − ...− tn−1

)xn−1 ≤ Sn(x1, x2, ..., xn)

holds for any (t1, t2, ..., tn−1) ∈ En−1 and x1, x2, ..., xn ≥ 1. Integrating (3.16) over
(t1, t2, ..., tn−1) ∈ En−1, with the definition of Bn(x1, x2, ..., xn) and the fact that
V ol(En−1) = 1/(n− 1)!, we obtain (3.14).

To justify that the coefficient 1/(n − 1)! in (3.14) can not be improved it is
enough to remark that (3.14) is an equality for x1 = x2 = ... = xn = 1, always
with the usual convention 00 = 1. (3.15) is immediate from (3.14) after a simple
reduction. 2

It is worth mentioning that, numerical experiments show that there is no general
comparison between (3.4), (3.9) and (3.14). That is, neither one among (3.4), (3.9)
and (3.14) is uniformly better than the other. In fact, for x1 = x2 = ... = xn = x ≥
1, it is easy to check that (3.5) is better than (3.15) if and only if xn+1 ≥ nn(x−1).
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Table 1:

x x = 4/3 x = 3/2 x = 3
(3.5) U1 = 81/512 ≃ 0.158 U1 = 8/81 ≃ 0.099 U1 = 1/162 ≃ 0.006

(3.13) U2 = 5 3
√
50/72 ≃ 0.256 U2 = 8/25

√
5 ≃ 0.143 U2 = 55/22.77 ≃ 0.0009

(3.15) U3 = 1/6 ≃ 0.162 U3 = 1/6
√
3 ≃ 0.288 U3 = 1/486 ≃ 0.002

Bounds U1 < U3 < U2 U1 < U2 < U3 U2 < U3 < U1

However, a full comparison between (3.15) and one of the inequalities (3.5) and
(3.15) seems to be generally difficult, by virtue of the complicated expression of
(3.15). For particular values of x1, x2, x3, the following example explains this latter
situation.

Example 3.11. Let us choose n = 3. For (3.9) we use (3.13). Elementary com-
putations lead to TABLE 1 which gives a comparison between the upper bounds
for B3(x, x, x), denoted by U1, U2 and U3, respectively, when applying (3.5), (3.13)
and (3.15) with particular values for x > 1.

3.2. Upper bounds for Bn when x1, x2, ..., xn ∈ (0, 1].
In [7], Dragomir et al. proved the following result:

(3.17) ∀x, y > 0, with (x− 1)(y − 1) ≥ 0, B(x, y) ≤ 1

xy
,

which in fact includes (3.2). Also, (3.17) implies that the inequality B(x, y) ≤ 1/xy
is valid for x, y ∈ (0, 1]. In [9], P. Ivády gave the following inequality

(3.18) ∀x, y ∈ (0, 1] B(x, y) ≤ 1

xy

x+ y

1 + xy
,

which refines B(x, y) ≤ 1/xy for x, y ∈ (0, 1]. The following result, which gives an
extension of (3.18) for n variables, tells us that the left inequality in (3.1) is still valid
when (x1, x2, ..., xn) ∈ En and n ≥ 3, with more information and improvement.

Theorem 3.12. Let x1, x2, ..., xn ∈ (0, 1]. For any n ≥ 3 we have

(3.19) Bn

(

x1, x2, ..., xn

)

≤
∑n

i=1 xi
∏n

i=1 xi

1

1 + pn(x1, x2, ..., xn)

1

1 + qn(x1, x2, ..., xn)
,

where, for the sake of simplicity, we set

pn(x1, x2, ..., xn) := max
1≤k≤n

n
∏

i=1,i6=k

xi,

qn(x1, x2, ..., xn) := max
1≤k≤n

xk

(

n
∑

i=1,i6=k

xi

)

.
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If moreover (x1, x2, ..., xn) ∈ En with x1, x2, ..., xn 6= 0 then we have

(3.20) Bn

(

x1, x2, ..., xn

)

<
1

∏n
i=1 xi

∑n
i=1 xi

1 +
∏n

i=1 xi
<

1
∏n

i=1 xi
.

Proof. The right inequality in (3.20) is obvious, since

∀(x1, x2, ..., xn) ∈ En, with x1, x2, ..., xn 6= 0,

n
∑

i=1

xi ≤ 1 < 1 +

n
∏

i=1

xi.

We mention that the condition (x1, x2, ..., xn) ∈ En, with x1, x2, ..., xn 6= 0 and
n ≥ 2, implies that 0 < xi < 1 for any i = 1, 2, ..., n.

To prove (3.19), we use a mathematical induction by utilizing (2.5). For n = 3,
(2.2) with (3.18) gives

B3(x1, x2, x3) = B(x2, x3)B(x1, x2 + x3)

≤ 1

x2x3

x2 + x3

1 + x2x3

1

x1(x2 + x3)

x1 + x2 + x3

1 + x1(x2 + x3)

=
x1 + x2 + x3

x1x2x3

1

1 + x2x3

1

1 + x1(x2 + x3)
.

This, with the symmetric character of B3(x1, x2, x3) immediately implies that (3.19)
is true for n = 3.

Assume that (3.19) is true for n − 1. The recursive relation (2.5), with the
recurrence hypothesis and (3.18), allows us to write

Bn

(

x1, x2, ..., xn

)

= Bn−1

(

x2, x3, ..., xn

)

B
(

x1,

n
∑

i=2

xi

)

≤ 1
∏n

i=2 xi

∑n
i=2 xi

1 +
∏n

i=2 xi

1

x1

∑n
i=2 xi

x1 +
∑n

i=2 xi

1 + x1

∑n
i=2 xi

=
1

∏n
i=1 xi

∑n
i=1 xi

(

1 +
∏n

i=2 xi

)(

1 + x1

∑n
i=2 xi

) .

This, with the fact that Bn(x1, x2, ..., xn) is symmetric in x1, x2, ..., xn immediately
yields (3.19).

Now, to prove the left inequality in (3.20) it is enough to remark that

(

1 +

n
∏

i=2

xi

)(

1 + x1

n
∑

i=2

xi

)

= 1 +
(

n
∏

i=2

xi

)(

1 + x1

n
∑

i=2

xi

)

+ x1

n
∑

i=2

xi > 1 +

n
∏

i=2

xi > 1 +

n
∏

i=1

xi,
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since 0 < x1, x2, ..., xn < 1. 2

The following corollary is an immediate consequence of Theorem 3.12.

Corollary 3.13. For any x ∈ (0, 1] and n ≥ 3 we have

Bn(x, x, ..., x) ≤
nx

xn(1 + xn−1)(1 + (n− 1)x2)
.

Remark 3.14. The inequality (3.19) does not persist for n = 2. That is, the
following inequality

(3.21) B(x, y) ≤ x+ y

xy

1

1 + xy

1

1 + max(x, y)

does not hold for any x, y > 0 with x+ y ≤ 1. In fact, if we take x = y = 1/2 then
(3.21) yields

B(1/2, 1/2) =
(

Γ(1/2)
)2

= π ≤ (4)(4/5)(2/3) = 32/15,

which is false, so justifying our claim.

3.3. Lower bounds for Bn(x1, x2, ..., xn) when x1, x2, ..., xn > 0.

Here, we will be interested by giving some lower bounds for the function Bn.
For the beta function in two variables, the following inequality

(3.22) ∀x, y > 0 B(x, y) ≥ xx−1yy−1

(x + y)x+y−1

is well-known in the literature. See [8] for instance and the related references cited
therein. An extension of (3.22) for n variables is our aim in this subsection and it
is recited in what follows.

Theorem 3.15. Let x1, x2, ..., xn > 0 and n ≥ 2. Then the following inequality

holds:

(3.23) Bn

(

x1, x2, ..., xn

)

≥
∏n

i=1(xi)
xi−1

(
∑n

i=1 xi

)

∑
n

i=1
xi−1

.

In particular, for any x > 0 we have

Bn(x, x, ..., x) ≥
1

nnx−1xn−1
.
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Proof. For n = 2, (3.23) is (3.22). By similar way as in the proof of Theorem 3.12
we have

Bn

(

x1, x2, ..., xn

)

= Bn−1

(

x2, x3, ..., xn

)

B
(

x1,

n
∑

i=2

xi

)

≥
∏n

i=2(xi)
xi−1

(
∑n

i=2 xi

)

∑
n

i=2
xi−1

(x1)
x1−1

(
∑n

i=2 xi

)

∑
n

i=2
xi−1

(
∑n

i=1 xi

)

∑
n

i=1
xi−1

,

from which the desired result follows after a simple reduction. 2

Another inequality concerning the lower bound of B(x, y) is given by, see [8, 12]

(3.24) ∀x, y > 0 B(x, y) >
√
2π

xx−1/2yy−1/2

(

x+ y
)x+y−1/2

.

For a discussion about comparison between (3.22) and (3.24) see [8]. Now, we will
state an extension of (3.24) for n variables as recited in the following.

Theorem 3.16. Let x1, x2, .., xn > 0 and n ≥ 2. Then we have

(3.25) Bn

(

x1, x2, ..., xn

)

>
(

2π
)(n−1)/2

∏n
i=1(xi)

xi−1/2

(
∑n

i=1 xi

)

∑
n

i=1
xi−1/2

.

In particular, for any x > 0 one has

Bn(x, x, ..., x) >
(

2π
)(n−1)/2 1

nnx−1/2x(n−1)/2
.

Proof. For n = 2, (3.25) is exactly (3.24). We proceed by a mathematical induction
as previous. The details are similar to those of the proof of Theorem 3.15 and
therefore omitted here for the reader. 2

Finally, we state the following remark which concerns a full comparison between
(3.23) and (3.25).

Remark 3.17. For x1, x2, ..., xn > 0 and n ≥ 2, let us consider the following
condition:

(3.26)

n
∑

i=1

xi >
(

2π
)n−1

n
∏

i=1

xi.

Then it is easy to check that, (3.23) is strictly stronger than (3.25) if and only if
(3.26) holds. If (3.26) is an equality then (3.23) and (3.25) coincide.
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[8] L. Grenié and G. Molteni, Inequalities for the beta function, Math. Inequal. Appl.,
18(4)(2015), 1427–1442.
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