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ABSTRACT. The fundamental goal of this paper is to investigate some inequalities in-
volving the special beta function in n variables. Our theoretical results obtained here are
extensions and refinements for some inequalities already discussed in the literature.

1. Introduction

Let C; := {z € C: Re(z) > 0}. The celebrated Euler’s Beta and Gamma
functions are, respectively, defined by

1
Ve,y € Cy  B(x,y) = / "N 1 —t)vtdt
0

+oo
VeeCy T(z):= / e 't ldt.
0

The functions B and I', which play a central and primordial place in some
different areas of mathematics, are useful from the theoretical point of view as well
as for practical purposes. In this introductive section, we will restrict ourselves to
recall some properties of B and I' that will be needed throughout this paper.

One of the most elementary properties, expressing a connection between B and
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T, is the following relationship

I'(@)I'(y)
1.1 B = 77
( ) V.I,yECJr (Iay) F(.’Ii‘i‘y)
It is also well-known that
(1.2) VeeCy T(z+1)=al(z).

It is worth mentioning that (1.2) has many consequences and applications. First,
(1.2) implies that T'(n+1) = n! for any integer n > 0 and so, I'(x) can be considered
as an extension of the factorial function from positive integers to € Cy. Secondly,
(1.2) implies that

MNz+1) T(x+2) I'(z+3)

Plw) = x - x(x+1) - z(zx+ 1)(z + 2) T

which tells us that I'(z), previously defined for € C,, can be extended for any
xz € C such that  # 0,—1,—2,.... This, with (1.1), implies that B(z,y) previ-
ously defined for z,y € C; can be in its turn extended for any x,y € C such that
z,y,x +y # 0,—1,—2,.... For more details and information about the preceding
discussion as well as for further properties and applications of B and I', we refer
the interested reader to [2, 3, 4, 5, 6, 10, 11, 12] for instance.

This paper will be organized as follows: after this short introduction, Section 2
is devoted to recall the definition as well as the elementary properties of the beta
function in n variables that will be needed throughout this paper. Section 3 is
focused to investigate some inequalities involving the beta function in n variables,
denoted by B,,(x1, x2, ..., 5 ), and such section is divided into three subsections. The
two first subsections are devoted to give some upper bounds for B, (z1, 2, ..., Zn)
when z1, 29, ..., 2, > 1 and 1, 2, ..., ,, € (0, 1], respectively. The third subsection
displays with some lower bounds of By, (z1, 2, ..., z,) for any z1, 22, ..., 2, > 0. Our
obtained inequalities are extensions and refinements for some inequalities already
discussed in the literature.

2. Beta Function in Three or More V ariables

For the sake of simplicity and clearness for the reader, we first present the
beta function in three variables and then that of n variables. We collect from the
literature the elementary properties of the beta function in n variables that will be
needed throughout this manuscript. For more details we refer the interested reader
to [1, 2, 6] and the related references cited therein.

2.1. Beta function with three variables
Let T be the standard triangle of R? having e := (0,0),e; := (1,0), ez := (0,1)
as vertices. In analytic form, T is defined by

T:{(t,s): t>0,s>0, t—l—sSl}.
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For any z,y,z € C,, we set

z

(2.1) Bs(z,y,z) := / s (1 -t —s) ~dtds.

T
The integrand function of (2.1), namely (¢,s) — t*"1s¥=1(1 —t — 5)*~! for
(t,s) € T, presents eventual singularities since it is not defined when at least one
of the three conditions Re(z) < 1, Re(y) < 1, Re(z) < 1 holds. This means that,
for this class of z,y, z the double integral in (2.1) is an improper integral and so,
its existence should be justified. We then must mention the following result.
Proposition 2.1. Let z,y,z € C. Then the integral of the right hand-side of

(2.1) is convergent. That is, (2.1) defines the map Bs from ((C+)3 into C.

It is obvious that B3(1,1,1) = area(T) = 1/2. Now, we state the following
result which reduces the computation of B3 to that of B.
Proposition 2.2. For any z,y,z € C,, the following relationship holds:

(2.2) Bs(z,y,2) = B(y, 2)B(z,y + 2).

The formula (2.2) when combined with (1.1) immediately yields the following
result.
Corollary 2.3. The following relation

[(2)C(y)T(2)

(2.3) Bs(z,y,2) = Tty 2)

holds for any x,y,z € C4. As a consequence, Bs(x,y, z) is symmetric in x,y, 2.

2.2. Beta function in n variables

This subsection extends the preceding one. We need some notation. Let n > 3
be an integer and let E,_; be the standard (n — 1)-dimensional simplex of R"~!
defined by

n—1

Ep_y = {(tl,tg,...,tn,l) eR: N4 < 1y 4,20, fori=1,2,.n— 1}.
i=1

Let 1, xa, ..., xz, € C4, we define

(2.4) Bn(:vl,:vg,...,xn) ::/ thﬂ_ﬁfldtldtg...dtn_l,
E

n-1 =1

where we set t,, ;=1 — Z?;ll t;.
For n = 2, the function Bs is exactly the classical beta function usually denoted
by B, notation that we conserve throughout the following. For n = 3 we are in the

situation of the preceding subsection.
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In a similar manner as for n = 3, we can prove a result that justifies the existence
of the integral in (2.4) which is improper for a class of x1, xa, ..., 2,,. Precisely, we
have the following.

Proposition 2.4. The map B, given by (2.4) is well-defined from ((C+)n into C.

It is well-known that B, (1,1,...,1) = Vol(E,-1) = 1/(n—1)!, where Vol(E,_1)
refers to the volume of E,_; for the R”~!- Lebesgue measure.

Now, we are in the position to state the following result which gives an inter-
esting recursive relationship that reduces the computation of the beta function B,
to those of B,,_1 and B.

Theorem 2.5. For any x1,x2,...,x, € C4 and n > 3 there holds

Proof. We apply the celebrated Fubini’s theorem to the multiple integral in (2.4).
For a similar way, see Remark 3.8 below. O

(2.5) Bn(xl,xg, ,xn) = Bn,l(xg,xg, ey xn)B(:zrl,

n
=2

As we will see in the next section, the recursive relation (2.5) is useful for
extending many properties from the beta function with two variables to that of n
arguments. It can be also used for obtaining the following result.

Corollary 2.6. The following formula
(2.6) Bn(xl,xg, ,a:n) =

holds for any x1, %2, ...,y € Cy, where we set o(x) =: Y. | ;. So, By, (xl, Ty eey a:n)
1S SYMmelric in T1,T2, ..., Tn.

From (2.6) we can immediately deduce some other properties for the function
B,,. As examples, the following relationships

Bn(:vl + 1, x9, ,xn) + Bn(xl,xg + 1, ,:vn) + ...
+ Bn(:vl,:vg, ey Ty + 1) = B(wl,xg, ...,:vn),

n
Bn (x17 T2y eeey xn) = Bn—m(xm-‘rla xm+27 seey xn)Bm-‘rl (xl7 T2y ey Ty Z xl)
1=m-+1
hold for any x1, zo, ..., z, € C4 and any integers n > 2, m > 1 such that n > m+ 2.
We end this section by stating the following remark which may be useful for
the reader.

Remark 2.7. (i) As for n = 2, we can give an expression of B, (x1, 3, ...,2,) in
terms of the spherical coordinates in n-dimension. We omit all detail about this
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latter point, since it will not be needed in the sequel.
(ii) From (2.5) we can deduce, by a simple mathematical induction, that the fol-

lowing equality
n k—1
Bn(xl, T, ...y xn) = H B(Z x;, a:k)
k=2 i=1

holds for any z1,z9,...,x, € C4 and n > 3.

3. Inequalities Involving B,

This section deals with some inequalities for the beta function in n variables.
In the literature we can find a lot of inequalities involving the beta function in two
variables, see [1, 6, 7, 8, 9] and the related references cited therein. However, to
find inequalities involving the function B,, for n > 3 seems to be difficult.

In [1], H. Alzer proved that the inequalities

1 1
3.1 0< = — By (21,29, s dn) <1— ———
) TR (1,83, -, 8n) (n—1)!
hold for any integer n > 3 and any 1, x2,...,z, > 1. Further he established there
that the extreme bounds 0 and 1 —1/(n — 1)! of (3.1) can not be improved. The
right inequality in (3.1) is not valid for n = 2. However, the left inequality of (3.1)
is valid for n = 2 as already obtained by S.S. Dragomir et al. in [7], i.e.

1
2 >1 B <.
(3.2) Vo, y > (z,y) < p”

3.1. Upper bounds for B, (1,2, ...,z,) when x1,29,...,x, > 1.

In what follows we will give a refinement of the left inequality in (3.1) with a
short proof. Precisely, the following theorem which is our first main result may be
stated.

Theorem 3.1. For any n > 3 and x1,Z2,...,xy, > 1 we have

1 1
n—2)' ([T @) (X, @)

(3.3) Bp(x1,Z2,..,Tpn) < (
< 1 < 1
BECESI( | R T) I I )
Further, the coefficients 1/(n — 2)! and 1/(n — 1)! in (3.3) are sharp.

Proof. The two right inequalities in (3.3) are obvious. To prove the left inequality
in (3.3) we will use a mathematical induction. For n = 3, we have by (2.2) and
(3.2)

1 1 1

B =B B +x3) < < .
3<I1,I2,I3) (I2,I3) (1171,1172 IB) T Xox3 ,Tl(l'g + $3) — 2x1x2%3 T1T2X3
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Assume that (3.3) is true for n—1. According to (2.5), with (3.2) and the recurrence
hypothesis, we have

n
By (21,22, ..., %n) = Bno1(22, 23, ..., 2n) B(21, Y ;)
i—2

< 1 1 1
~ (n=3) (I @) ( Z?:_; ;) T1 (Xip )

This, with the fact that Z?_Ql x; > n — 2, yields

1 1
(H?:l ‘TZ) ( E?:Q ‘TZ) (n — 3)!( E?:_; Il)

Bn(II;IQa ,In) S

1
S n n *
(n = 2)N(TTi2 @) (5 24)
The desired result is so proved. If we take x1 = 9 = ... = z,, = 1 then the two left
inequalities of (3.3) are reduced to an equality. This implies that the coefficients
1/(n—2)l'and 1/(n — 1)! in (3.3) can not be improved. O

As a consequence of the previous theorem we have the following corollary which,
in its turn, gives a refinement of the left inequality in (3.3).

Corollary 3.2. For anyn > 3 and x1, 22, ...,x, > 1 there holds

1 1 1
n—2)! (H?:l Iz) sn(z1, 72, ...,CCn)7

(3.4) B (z1, 22, ..ypy) < (

where we set
n

S (X1, Tay oy ) 1= 1rgn%xn ( Z xl)
i=1,i#k
In particular, for any x > 1 real number and n > 3 we have

1 1
Proof. By (3.3) with the fact that B(z1,z2,...,z,) is symmetric in zq, z9, .., T,
we immediately deduce (3.4) after simple manipulations. The fact that the left
inequality in (3.4) gives a refinement of that in (3.3) is immediate. The details are
straightforward and therefore omitted here. O

Remark 3.3. (i) The left inequality in (3.3), and so that in (3.4), is not valid for
n = 2. That is, the inequality B(z,y) < 1/zy? does not hold for any z,y > 1.
Indeed, if we take x = 1,y = 2 we obtain B(1,2) =1/2 > 1/4.

(i) Throughout the following, we will adopt as usual the equality 0° = 1, for the
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sake of convenience and simplicity. Such convention is legitime by virtue of the
equality lim, g 2® = 1.

In order to give more inequalities about the beta function B,,, we need to state
the following lemma.

Lemma 3.4. Let a,b,c > 0 with ¢ < 1. Then one has

b a“bb(l _ c)a-i—b
3.6 su t*(l—t—¢) = —-——
(3.6) ogtgrl)—c ( ) (a + b)ath

Consequently, we have

a“bb(l _ C)a—i—b—i—l
(a + b)atb

(3.7) /Ol_ct“(l —t—c)dt <

Proof. If a =0 or b=0or ¢ =1, (3.6) is trivial. Assume that a > 0, b > 0 and
0 < c < 1. It is easy to see that

b

t
t*(1—t—c) =(1—c) " Pu*(1—u)P, withu:= 1—,0 <u<l
—c

It is then enough to study the following function
®(u) :=u(1 —u)’, 0<u<l.
Clearly, ®(0) = ®(1) = 0. Simple computation leads to

@ (u) =u (1 —uwb " (a— (a+b)u).

We then deduce that ® is increasing for v € [0,a/(a + b)] and decreasing for u €
[a/(a+b),1). It follows that ® presents a maximum at u = a/(a+b) € (0,1), with

s 6 = 2(a/a+0) = (75)" () - g

The proof of (3.6) is finished and then (3.7) follows. ad
After this, the following result may be stated.
Proposition 3.5. Let z,y > 1. Then we have
(z -1y -1
(@ +y—2)77

(3.8) B(z,y) <

Proof. Follows from (3.6) with a =2 —1, b=y — 1, ¢ = 0, and the definition of
the beta function B. O
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Remark 3.6. (i) Numeric experiments show that neither (3.2) nor (3.8) is uni-
formly better than the other. The following items explain this claim:

o If we take x = y = 3/2 then (3.2) and (3.8) give B(3/2,3/2) < 4/9 and
B(3/2,3/2) < 1/2, respectively, with 4/9 < 1/2.

o If we take z = y = 3 then (3.2) and (3.8) imply that B(3,3) < 1/9 and
B(3,3) < 1/16, respectively, with 1/9 > 1/16.
(ii) It is easy to check that if = y > 2 then (3.8) is better than (3.2). We conjecture
that, if z,y > 2 then (3.8) refines (3.2).

The following result gives an inequality involving B,, in a recursive manner.

Proposition 3.7. Let x1,x2,...,x, > 1 and n > 3. Then the following inequality

(3.9) Bn(z1,72, ... Tn_1,n)
(; — )% Yz, — )%t

<
>~ (:Ci o, — 2)$i+$n—2

B 1 (21, @2, oy i1, Tig 1y ooy o1, Ti + )

holds for any i =1,2,...,n— 1. In particular, for any real number x > 1 and n > 3
we have

(3.10) Bp(z,z,...,x)

(LL' _ 1)2m—2 ((TL _ 2)1: _ 1)("_2)1—1 ((TL . 1)$ . 1)(71—1)1—1
— 4(n=3)(z—1) ((TL . 1).’[] . 2) (n—1)z—2 (mc _ 2)111—2 :

Proof. By virtue of the symmetric character of B, (x1,2,...,Zys), it is enough to
prove (3.9) for ¢ = 1. According to (2.6) we can easily check that

Bp(x1,22,....2n) = Bp_1(x2, 23, ..., Tn_1, 21 + n) B(x1, Tp).

This, with (3.8), immediately yields (3.9). The inequality (3.10) follows from (3.9)
after a simple mathematical induction. O

Remark 3.8. The previous result can be also shown in the following way. By (2.4)

with the Fubini’s theorem we can write

(3.11) Bn(:vl,:vg,...,:vn)
1—t,
:/ (/ tfl—lt;gnfldtl)t§2‘1t§3‘1...tﬁzgl‘ldtzdtg...dtn,l,
E,_2 0

where we set t, ;=1 —1t —ty —... —tn_1 and t,, :=t9 + 3+ ... + t,_1 for the sake
of simplicity. According to (3.7) we have

1—t -1 Tp—1
" —1)= —1)%n _ _
/ tfliltfznildtl < (21 ) (xnm +m) (- tn)wﬁ-wn 1'
0 (wl +x, — 2) T
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Substituting this in (3.11), with ,, = ta+t3+...+t,—1 and again by (2.4) we obtain
(3.9).

The previous theorem gives a recursive inequality involving B,, and B,,—;. The
following example explains the use of such inequality.

Example 3.9. Take n = 3. Simple manipulations lead to

(.Il — 1)1171(.%2 — 1)x271(:173 — 1)x371 (Il + x3 — 1)11+x371
(acl + T2 + X3 — 2)m1+m2+13_2 (£C1 + 3 — 2)11"%3_2.

Bs(z1,x2,x3) <

This, with the fact that Bs(x1,x2,x3) is symmetric in x1, x2, z3 allows us to obtain

(acl — 1)11_1(1'2 — 1)12_1(1'3 — 1)m3—1

3.12 B <
(3.12) 3(x1, @2, 3) < (@1 + @3 + 73 — 2)71+eatea=2

O(xlax27x3)7

where we set

(71 + @g — 1)TrF@2=1 () 4 5 — 1)T1F2s—1
(x1 + @0 — 2)21F22=2" (1 4 x5 — 2)T1Fw3—2
(xo + x3 — 1)12+I3_1 }
"(wg + w3 — 2)r2tzs—2 )7

C(x1,x2,x3) := min{

In particular, for any = > 1 one has

(LL' _ 1)1—1 (2.’[] _ 1)21—1
Jz—1 (31: _ 2)31—2 '

(3.13) Bs(z,x,x) <

Now, a question arises from the above: does (3.8) have an analog for n variables.
The following result answers positively this latter question.

Theorem 3.10. Let z1,x3,...,x, > 1 and n > 2. Then we have

R | (YO

n

(n—1)! (Z?:l v n) T

Further, the coefficient 1/(n — 1)! in (3.14) is sharp. In particular, for any real
number x > 1 one has

(314‘) Bn($17$27"'7xn) S

1 1

(3.15) Bn(CL‘,CL',...,CC) < (n_ 1)!nn(m—1)'

Proof. Let x1,x9,...,x, > 1 be fixed. The map

(t1, b2y oy 1) = £ 71227 P T (Lt —ty — =ty )™

el
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is continuous on the compact E,_; of R*™!. So, it is bounded in E,_; and its
supremum, i.e.

— — n— -1 n_l
Sn(X1, T, oy Ty) 1= sup 7t 1t§2 1...tz_11 (1—t1 —tg—...—tn_l)m
(t1,-stn—1)€EEL_1

exists. We will compute S,,(z1, 2, ..., ;) in a recursive manner. If we put

S (ta, b3y ooy tn1) = sup A (R

0<t1<l—to—...—tpn_1
then it is clear that
_ ne1—1
Sn(xl,.fg,...,.fn) = sup t;z 1...tf1711 S}L(tg,tg,...,tnfl).
(t2)~~~;t7171)eE7172
Following (3.6) we have
(LL'l — 1)m1—1($n — 1)%‘_1 (1 —ty — ... — tn_l)ml+wn_2

1 —
Sn (tQ; 3,0y t’n.*l) - (xl +x, — 2)m1+wn—2

Summarizing, the following recursive relationship

(z1 — 1) Yz, — 1)%~1
(1 + xp — 2)T2FEn—2

S’n,(xluxQu"'uxn): Sn_l(l'g,...,l'n_l,xl +$n_1)

holds for any x1, zs,...,z, > 1 and n > 2. By a simple mathematical induction we

show that -
H?:l (‘TZ - 1) '
Yioiai—n’
(E?:l Ti — ”) '

This, with the definition of Sy, (21, z2, ..., 2, ), implies that the inequality

Sn(z1, T2, ..., Tpn) =

(316) tfliltgzil...tfliill_l (1 — tl — t2 — . tn_l)wn_l S Sn(,fl,xz, ,Jin)
holds for any (t1,t2,...,tn—1) € En—1 and x1, o, ..., z, > 1. Integrating (3.16) over
(t1,t2, ..., tn—1) € Ep_1, with the definition of By, (z1,x2,...,2,) and the fact that
Vol(En—1) =1/(n —1)!, we obtain (3.14).

To justify that the coefficient 1/(n — 1)! in (3.14) can not be improved it is

enough to remark that (3.14) is an equality for 1 = z2 = ... = x,, = 1, always
with the usual convention 0° = 1. (3.15) is immediate from (3.14) after a simple
reduction. O

It is worth mentioning that, numerical experiments show that there is no general
comparison between (3.4), (3.9) and (3.14). That is, neither one among (3.4), (3.9)
and (3.14) is uniformly better than the other. In fact, for 1 = a2 = ... =2, = 2 >
1, it is easy to check that (3.5) is better than (3.15) if and only if 27+ > pn(==1),
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Table 1:
T x=4/3 x=23/2 =3
(3.5) Uy = 81/512 ~ 0.158 Uy = 8/81 ~ 0.099 Uy = 1/162 ~ 0.006
(3.13) Uz = 54/50/72 ~ 0.256 | Uz = 8/25v/5 ~ 0.143 | Uz = 5°/22.77 ~ 0.0009
(3.15) Us = 1/6 ~ 0.162 Us = 1/61/3~0.288 | Us = 1/486 ~ 0.002
Bounds | Ui < Us < Uz Ui < Uz <Us Uz <Us <U

However, a full comparison between (3.15) and one of the inequalities (3.5) and
(3.15) seems to be generally difficult, by virtue of the complicated expression of
(3.15). For particular values of x1, z2, x3, the following example explains this latter
situation.

Example 3.11. Let us choose n = 3. For (3.9) we use (3.13). Elementary com-
putations lead to TABLE 1 which gives a comparison between the upper bounds
for Bs(x,x,x), denoted by Uy, Uz and Us, respectively, when applying (3.5), (3.13)
and (3.15) with particular values for z > 1.

3.2. Upper bounds for B, when z1,zs,...,2, € (0,1].
In [7], Dragomir et al. proved the following result:
(3.17) Ve,y >0, with (z—-1)(y—1)>0,
which in fact includes (3.2). Also, (3.17) implies that the inequality B(z,y) < 1/zy
is valid for z,y € (0,1]. In [9], P. Ivddy gave the following inequality

1 z+y

3.18
(3.18) w1ty

v,y € (0,1]

which refines B(x,y) < 1/zy for z,y € (0,1]. The following result, which gives an
extension of (3.18) for n variables, tells us that the left inequality in (3.1) is still valid
when (z1, 2, ...,z,) € E,, and n > 3, with more information and improvement.

Theorem 3.12. Let x1, 22, ...,z € (0,1]. For any n > 3 we have

S 1 1

3.19 n
( ) [l @i L+ pu(zr, 22,0 20) 1+ gn(1, 22, ...

3

Bn(I1;I27"'7xn) < ,(En)

where, for the sake of simplicity, we set

T1,X2, ..., T = max H x;
pn( ? ) 9 n) 1§k§n 19
i=1,i%k
n
qn(T1, 22, ..., Ty) = lglgécnwk( E xz)
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If moreover (x1, 22, ...,xn) € E, with 1,2, ..., 2, # 0 then we have

1 21 Ti < 1
H?:l z 1+ H?:l Li H?:l i

(3.20) Bn(:vl,:vg,...,xn) <

Proof. The right inequality in (3.20) is obvious, since
n n
V(z1,x,...;xn) € By, with x1,29,...,;2, #0, le <1l<l1l+ H:z:l
i=1 i=1

We mention that the condition (21,32, ...,2,) € E,, with z1, 29, ...,z, # 0 and
n > 2, implies that 0 < z; < 1 for any i = 1,2, ..., n.

To prove (3.19), we use a mathematical induction by utilizing (2.5). For n = 3,
(2.2) with (3.18) gives

Bs(x1,x2,x3) = B(xa,x3)B(x1, 22 + 3)

1 xo+ a3 1 T+ T2 + T3
 xox3 1+ 073 T (,TQ + 1'3) 1+ 1'1(1'2 + ,Tg)
1 + T2 + X3 1 1

- T1X2X3 1+ xox31 +£L'1($2 +$3)'
This, with the symmetric character of Bz(x1, 2, 23) immediately implies that (3.19)
is true for n = 3.

Assume that (3.19) is true for n — 1. The recursive relation (2.5), with the
recurrence hypothesis and (3.18), allows us to write

By (21,22, ..., %n) = Bn_1(22, 23, ... wn) B(21, » ;)
i=2

<1 D ia T 1 T+ 3o T

Tl m L+ L m o 2w L+ o 30 @

_ 1 D Ti
[imy o (LTI @) (U4 21 g @)
This, with the fact that B, (x1,xa, ..., ) is symmetric in z1, z2, ..., ,, immediately
yields (3.19).
Now, to prove the left inequality in (3.20) it is enough to remark that

=2 1=2
=1+ (HIz)(l‘i‘Ilzxz) +x1 le > 1+H:171 > 1+HI,L-,
i=2 i=2 i=2 i=2 =1
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since 0 < x1, 29, ...,y < 1. O
The following corollary is an immediate consequence of Theorem 3.12.

Corollary 3.13. For any x € (0,1] and n > 3 we have

nx
Bn 3Ly eeey < .
(=, 2) (1427 1) (14 (n—1)22)

Remark 3.14. The inequality (3.19) does not persist for n = 2. That is, the
following inequality

z+y 1 1
zy 14+ zyl+ max(z,y)

(3.21) B(z,y) <

does not hold for any z,y > 0 with  + y < 1. In fact, if we take z =y = 1/2 then
(3.21) yields

B(1/2,1/2) = (T(1/2))" = = < (4)(4/5)(2/3) = 32/15,

which is false, so justifying our claim.

3.3. Lower bounds for B, (z1,x2,...,z,) when z1, 22, ...,z, > 0.
Here, we will be interested by giving some lower bounds for the function B,.
For the beta function in two variables, the following inequality

xm—lyy—l

is well-known in the literature. See [8] for instance and the related references cited
therein. An extension of (3.22) for n variables is our aim in this subsection and it
is recited in what follows.

Theorem 3.15. Let x1,22,...,2, > 0 and n > 2. Then the following inequality
holds:

n . xifl
(3.23) By (z1,22, ..., 3n) > Hi:l(xgn —.
(i z) ==

In particular, for any x > 0 we have
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Proof. For n = 2, (3.23) is (3.22). By similar way as in the proof of Theorem 3.12
we have

By (21,22, ..., %n) = Bn_1(22, 23, ..., 2n) B(21, » ;)

n
=2
> [lip (@)™~ (xl)”“‘l(Z?:zxi)Zi:”i’l
T (ELw) T (S

from which the desired result follows after a simple reduction. O

)

Another inequality concerning the lower bound of B(z,y) is given by, see [8, 12]

Ixfl/nyfl/Q

(3.24) Vo,y >0 B(z,y) > V2 TH+y—1/2"

(w + y)
For a discussion about comparison between (3.22) and (3.24) see [8]. Now, we will
state an extension of (3.24) for n variables as recited in the following.
Theorem 3.16. Let x1,x3,..,x, >0 and n > 2. Then we have

(3.25) B, (171, To, ..., xn) > (27‘()("71)/2 (Zl;lz_l(:;g" s yoR
im1 i) T

In particular, for any x > 0 one has

(n—1)/2 1

B, (z,z,....,x) > (27T) ne—1/2,(n—1)/2"

Proof. For n = 2, (3.25) is exactly (3.24). We proceed by a mathematical induction
as previous. The details are similar to those of the proof of Theorem 3.15 and
therefore omitted here for the reader. a

Finally, we state the following remark which concerns a full comparison between
(3.23) and (3.25).

Remark 3.17. For zi,z9,...,2, > 0 and n > 2, let us consider the following
condition:

(3.26) zn:x > (27)"" ﬁ:v
=1 =1

Then it is easy to check that, (3.23) is strictly stronger than (3.25) if and only if
(3.26) holds. If (3.26) is an equality then (3.23) and (3.25) coincide.
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