라플라스 분포와 가중치 마스크를 이용한 AWGN 제거

AWGN Removal using Laplace Distribution and Weighted Mask

  • Park, Hwa-Jung (Dept. of Smart Robot Convergence and Application Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • 투고 : 2021.09.30
  • 심사 : 2021.11.08
  • 발행 : 2021.12.31

초록

현대 사회는 4차 산업혁명과 IoT 기술의 발전으로 폭넓은 분야에 다양한 디지털 기기들이 보급되고 있다. 하지만 영상을 획득하거나 전송하는 과정 등에서 잡음이 발생하여 정보를 훼손할 뿐 아니라, 시스템에 영향을 끼쳐 오류와 잘못된 동작을 일으킨다. 영상 잡음 중 대표적인 잡음으로 AWGN이 있다. 잡음을 제거하기 위한 방법으로 선행연구가 진행되어져 왔고 그 중 대표적인 방법으로 AF, A-TMF, MF 등이 있다. 기존의 필터들은 영상의 특성을 고려하기 어려워 고주파 성분이 많은 영역에서는 스무딩 현상이 발생한다는 단점이 있다. 따라서 제안한 알고리즘은 고주파영역에서도 효과적으로 잡음을 제거하기 위해 표준편차 분포도를 구한 후, 커브 피팅 방식을 이용한 라플라스 분포의 확률밀도함수 가중치를 적용하여 최종 출력을 구한다.

In modern society, various digital devices are being distributed in a wide range of fields due to the fourth industrial revolution and the development of IoT technology. However, noise is generated in the process of acquiring or transmitting an image, and not only damages the information, but also affects the system, causing errors and incorrect operation. AWGN is a representative noise among image noise. As a method for removing noise, prior research has been conducted, and among them, AF, A-TMF, and MF are the representative methods. Existing filters have a disadvantage that smoothing occurs in areas with high frequency components because it is difficult to consider the characteristics of images. Therefore, the proposed algorithm calculates the standard deviation distribution to effectively eliminate noise even in the high frequency domain, and then calculates the final output by applying the probability density function weight of the Laplace distribution using the curve fitting method.

키워드

참고문헌

  1. Y. W. Kim, D. J. Park, and J. C. Jeong, "Adaptive Gaussian Filter for Noise Reduction According to Image Characteristics," in Conference on The Institute of Electronics and Information Engineers, Incheon : Korea, pp. 634-636, 2017.
  2. B. W. Cheon and N. H. Kim, "Noise Removal using Gaussian Distribution and Standard Deviation in AWGN Environment," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 6, pp. 675-681, Jun. 2019. DOI: 10.6109/jkiice.2019.23.6.675.
  3. G. Thanakumar, S. Murugappriya, and G. R. Suresh, "High Density Impulse Noise Removal using BDND Filtering Algorithm," in 2014 International Conference on Communication and Signal Processing, Melmaruvathur : India, pp. 1958-1962, 2014.
  4. K. Chithra and T. Santhanam, "Hybrid Denoising Technique for Suppressing Gaussian Noise in Medical Images," in 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai : India, pp. 1460-1463, 2017.
  5. N. Arazm, A. Sahab, and M. F. Kazemi, "Noise Reduction of SEM Images using Adaptive Wiener Filter," in 2017 IEEE International Conference on Cybernetics and Computational Intelligence, Phuket : Thailand, pp. 50-55, 2017.
  6. Y. H. Kim and J. H. Nam, "Statistical Algorithm and Application for the Noise Variance Estimation," Journal of the Korean Data & Information Science Society, vol. 20, no. 5, pp. 869-878, Sep. 2009.
  7. T. Eltoft, T. Kim, and T. W. Lee, "On the Multivariate Laplace Distribution," IEEE Signal Processing Letters, vol. 13, no. 5, pp. 300-303, May. 2006. DOI: 10.1109/LSP.2006.870353.
  8. X. Shang , J. Liang, G. Wang, H. Zhao, C. Wu, and C. Lin, "Color-Sensitivity-based Combined PSNR for Objective Video Quality Assessment," IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 5, pp. 1239-1250, May. 2019. DOI: 10.1109/TCSVT.2018.2836974.