Acknowledgement
본 논문은 과학기술정통신부 및 정보통신기획평가원의 SW 중심대학지원사업의 연구결과로 수행되었음(2019-0-01816). 본 논문은 2021학년도 한국외국어대학교 교내학술연구비 지원에 의하여 이루어진 것임.
References
- S. U. Park, "Artificial Intelligent Technology and Market Trend", The magazine of Korea Institute of Information and Communication Engineering, Vol. 19, No. 2, pp. 11-22, 2018. https://doi.org/10.14801/jkiit.2018.16.11.11
- G. Nguyen, S. Dlugolinsky, and M. Bobaket, V. Tran, A. Garcia, I. Heredia, P. Malik, and L. Hluchy, "Machine Learning and Deep Learning Frameworks and Libraries for Large-scale Data Mining: a Survey", Artificial Intelligence Review, Vol. 52, pp. 77-124, 2019. https://doi.org/10.1007/s10462-018-09679-z
- L. Yeager, J. Bernauer, A. Gray, and M. Houston, "Digits: the Deep Learning GPU Training System", ICML 2015 AutoML Workshop, pp. 1-4, 2015.
- TensorBoard: www.tensorflow.org/tensorboard.
- H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, "Integer quantization for deep learning inference: Principles and empirical evaluation", arXiv:2004.09602, 2020.
- A. Jain, S. Bhattacharya, M. Masuda, V. Sharma, and Y. Wang, "Efficient execution of quantized deep learning models: A compiler approach", arXiv preprint arXiv:2006.10226, 2020.
- Z. Yao, Z. Dong, Z. Zheng, A. Gholami, J. Yu, E. Tan, L. Wang, Q. Huang, Y. Wang, M. W Mahoney, and K. Keutzer, "HAWQV3: Dyadic neural network quantization", arXiv preprint arXiv:2011.10680, 2020.
- Md A. Raihan, N. Goli, and Tor M. Admodt, "Modeling Deep Learning Accelerator Enabled GPUs", IEEE ISPASS, pp.29-92, 2019.
- F. Farshchi, Q. Huang, and H. Yun, "Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim", EMC2'19, Washington D.,C., USA, Feb., 2019.
- A. Marchisio, M. A. Hanif, F. Khalid, G. Plastiras, C.Kyrkou, T. Theocharides, and M. Shafique, "Deep Learning for Edge Computing: Current Trends, Cross-Layer Optimizations, and Open Research Challenges", IEEE Computer Society Annual Symposium on VLSI, Miami, FL, USA, pp. 553-559, 2019.
- S.-H. Kang, S.-Y. Cho, and S.-H. Lim, "Quantization Simulator for Deep Learning Accelerator", Proceedings of CICS'20, KIEE, pp. 487-488, 2020.
- Tensorflow Lite: https://www.tensorflow.org/lite.
- PyTorch Quantization (online): https://pytorch.org/blog/introduction-to-quantization-on-pytorch.
- Apache TVM: https://tvm.apache.org.
- Darknet (online): http://pjreddie.com/darknet/.
- J. Redmon and A. Farhadi, "YOLO9000: Better, faster, stronger", In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July, pp. 7263-7271, 2017.
- Sharp(online): https://sharp.pixelplumbing.com/.
- Y.-H. Lee and Y. Kim, "Comparison of CNN and YOLO for Object Detection", Journal of KSDT, Vol. 19, No. 1, pp. 85-92, 2020.