Search for Adsorption Coordination of SiH4 or Al(CH3)3 on Si (001) Surface Using Genetic Algorithm and Density Functional theory

유전 알고리즘과 밀도 범함수 이론을 이용한 Si (001) 표면에서의 SiH4 또는 Al(CH3)3 전구체의 흡착 배위 탐색

  • Kim, Hyun-Kyu (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Jason (Department of Convergence IT Engineering, Pohang University of Science and Technology) ;
  • Kim, Yeong-Cheol (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education)
  • 김현규 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김재선 (포항공과대학교 IT융합공학과) ;
  • 김영철 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2021.09.14
  • Accepted : 2021.12.14
  • Published : 2021.12.31

Abstract

We search for an appropriate initial adsorption coordination of precursor on surface by using genetic algorithm (GA) and density functional theory. SiH4 and Al(CH3)3 as precursor, and OH-terminated Si (001) as surface are used for this study. Selection, crossover, and mutation as hyperparameters of GA are applied to search for the adsorption coordination of the precursors on the surface as a function of generation. Bond distances between precursors and the surface are used to explain the adsorption behavior of the precursors.

Keywords

Acknowledgement

이 논문은 2019년도 한국기술교육대학교 교육연구진흥과제 연구비 지원에 의하여 연구되었습니다.

References

  1. R.W. Johnson, A. Hultqvist, and S.F. Bent, "A brief review of atomic layer deposition: from fundamentals to applications," Materials Today. Vol. 17(5), pp. 236-246, 2014. https://doi.org/10.1016/j.mattod.2014.04.026
  2. K. Cao, J. Cai, and R. Chen, "Inherently Selective Atomic Layer Deposition and Applications," Chemistry of Materials. Vol. 32, pp. 2195-2207, 2020. https://doi.org/10.1021/acs.chemmater.9b04647
  3. P. Klement, D. Anders, L. Gumbel, M. Bastianello, F. Michel, J. Schormann, M. T. Elm, C. Heiliger, and S. Chatterjee, "Surface Diffusion Control Enables Tailored-Aspect-Ratio Nanostructures in Area-Selective Atomic Layer Deposition," ACS Applied Materials & Interfaces. Vol. 13, pp. 19398-19405, 2021. https://doi.org/10.1021/acsami.0c22121
  4. N.E. Richey, C. de Paula, and S.F. Bent, "Understanding chemical and physical mechanisms in atomic layer deposition," The journal of chemical physics. Vol. 152, pp. 040902, 2020. https://doi.org/10.1063/1.5133390
  5. S.M. George, "Atomic Layer Deposition: An Overview," Chemical Reviews, Vol. 110(1), pp. 111-131, 2010. https://doi.org/10.1021/cr900056b
  6. D.-H. Kim, S.-B. Baek, and Y.-C. Kim, "Energy barriers for trimethylaluminum reaction with varying surface hydroxyl density," Applied Surface Science, Vol. 258(1), pp. 225-229, 2011. https://doi.org/10.1016/j.apsusc.2011.08.035
  7. S.-B. Baek, D.-H. Kim, and Y.-C. Kim, "Adsorption and surface reaction of bis-diethylaminosilane as a Si precursor on an OH-terminated Si (001) surface," Applied Surface Science, Vol. 258(17), pp. 6341-6344, 2012. https://doi.org/10.1016/j.apsusc.2012.03.033
  8. Y.-C. Jeong, S.-B. Baek, D.-H. Kim, J.-S. Kim, and Y.-C. Kim, "Initial reaction of silicon precursors with a varying number of dimethylamino ligands on a hydroxyl-terminated silicon (001) surface," Applied Surface Science, Vol. 280(1), pp. 207-211, 2013. https://doi.org/10.1016/j.apsusc.2013.04.129
  9. K.-Y. Kim, J.-H. Yang, D.-G. Shin, and Y.-C. Kim, "Initial Reaction of Hexachlorodisilane on Amorphous Silica Surface for Atomic Layer Deposition Using Density Functional Theory," Journal of the Korean Ceramic Society, Vol. 54(5), pp. 443-447, 2017. https://doi.org/10.4191/kcers.2017.54.5.11
  10. R.D. Felice, A. Selloni, and E. Molinari, "DFT Study of Cysteine Adsorption on Au (111)," The Journal of Physical Chemistry B, Vol. 107(5), pp. 1151-1156, 2003. https://doi.org/10.1021/jp0272421
  11. P. Liu, J. Liu, and M. Wang ", Adsorption of ethanol molecules on the Al (111) surface: a molecular dynamic study," Royal Society Open Science. Vol. 6(1), pp. 181-189, 2018.
  12. J. Kim, J.-Y. Jo, I.-G. Choi, and Y.-C. Kim, "Search for adsorption geometry of precursor on surface using genetic algorithm: MoO2Cl2 on SiO2 surface," Journal of the Korean Ceramic Society, Vol. 57(7), pp. 669-675 2020. https://doi.org/10.1007/s43207-020-00079-0
  13. J. Carr, "An Introduction to Genetic Algorithms," Senior Project, Vol. 1, p. 40, 2014.
  14. J. Zhao, R. Shi, L. Sai, X. Huang, and Y. Su, "Comprehensive genetic algorithm for ab initio global optimisation of clusters," Molecular Simulation, Vol. 42(10), pp. 809-819, 2016. https://doi.org/10.1080/08927022.2015.1121386
  15. Y. Xiao, and D.E. Williams, "Genetic algorithm: a new approach to the prediction of the structure of molecular clusters," Chemical Physics Letters, Vol. 215(1-3), pp. 17-24, 1993. https://doi.org/10.1016/0009-2614(93)89256-H
  16. G. Kresse and J. Furthmuller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set," Computational Materials Science, Vol. 6, pp. 15-50, 1996. https://doi.org/10.1016/0927-0256(96)00008-0
  17. P.E. Blochl, "Projector augmented-wave method," Physical Review B. Vol. 50, pp. 17953-17979, 1994. https://doi.org/10.1103/physrevb.50.17953
  18. G. Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method," Physical Review B, Vol. 59, pp. 1758-1775, 1999. https://doi.org/10.1103/physrevb.59.1758
  19. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Physical Review Letters, Vol. 77, pp. 3865-3868, 1996. https://doi.org/10.1103/PhysRevLett.77.3865
  20. H.J. Monkhorst and J.D. Pack, "Special points for Brillouin-zone integrations," Physical Review B, Vol. 13, pp. 5188-5192, 1976. https://doi.org/10.1103/PhysRevB.13.5188
  21. W. Chaibi, R.J. Pel'aez, C. Blondela, C. Drag, and C. Delsart., "Effect of a magnetic field in photodetachment microscopy," The European Physical Journal D, Vol 58, pp. 29-37, 2010. https://doi.org/10.1140/epjd/e2010-00086-7
  22. M. Scheer, R.C. Bilodeau, J. Thogersen, and H.K. Haugen, "Threshold photodetachment of Al: Electron affinity and fine structure," Physical Review A, Vol. 57(3), R. 1493, 1998. https://doi.org/10.1103/PhysRevA.57.R1493