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1 |  INTRODUCTION

A meaningful task in computer vision field involves detecting 
visual relationships in an image. Figure 1 shows the examples 
of the visual relationships. The task is based on outperformed 
object classification [1,2] and object detectors [3‒6] and 
acts as a bridge to higher image understanding tasks such as 

image captioning [7,8], scene graph [9‒11], and VQA [12]. 
The recognition of visual relationships allows a computer to 
understand what occurs in an image. The aforementioned 
ability is more advanced than the ability to understand an 
image by only using an object list. The achievement of ex-
cellent performance in deep learning, object classification, 
and detection performance is sufficient for real data, and thus 
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Detecting visual relationships in an image is important in an image understanding 
task. It enables higher image understanding tasks, that is, predicting the next scene 
and understanding what occurs in an image. A visual relationship comprises of a 
subject, a predicate, and an object, and is related to visual, language, and spatial cues. 
The predicate explains the relationship between the subject and object and can be cat-
egorized into different categories such as prepositions and verbs. A large visual gap 
exists although the visual relationship is included in the same predicate. This study 
improves upon a previous study (that uses language cues using two losses) and a 
spatial cue (that only includes individual information) by adding relative information 
on the subject and object of the extant study. The architectural limitation is demon-
strated and is overcome to detect all zero-shot visual relationships. A new problem 
is discovered, and an explanation of how it decreases performance is provided. The 
experiment is conducted on the VRD and VG datasets and a significant improvement 
over previous results is obtained.
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researchers can investigate the next level of image under-
standing tasks.

Higher image understanding tasks focus on interpreting the 
structure of an image, relationship between objects, and what 
happens in an image among others. Image captioning is a task 
wherein the input corresponds to an image, and the output cor-
responds to a summary of the image. The task adopts a CNN 
and LSTM [13]. The CNN encodes the image as features, and 
the LSTM decodes the features to obtain a natural language 
summary for the image. A scene graph task transforms an 
image to a scene graph, which is similar to a graph in computer 
science. A vertex is considered an object and attribute of each 
object is a sub-vertex. An edge corresponds to a relationship 
between two objects. Specifically, VQA corresponds to a ques-
tion and answer problem although this task deals with the vi-
sual aspect of an image. “How many children in an image?” is 
a visual question, and “4” or “4 children” are possible answers.

Visual relationship detection can only detect the relation-
ship between two objects in an image and corresponds to an 
intermediate-level task as opposed to a higher-level task. A 
significant improvement on this task can support higher-level 
tasks because a visual relationship denotes the basis of a struc-
ture of an image. The visual relationship includes three com-
ponents, namely the subject, predicate, and object. The subject 
and object play the same role as that of a sentence in natural 
language. However, the predicate corresponds to a type of reg-
ular verb but its scope is wider. It is considered as a predicate if 
it can describe a relationship between two objects.

A visual relationship can be detected via two methods. The 
first method considers each visual relationship as a class. {per-
son,use,telephone}, {person,use,cellphone} correspond to dif-
ferent classes. Visual phrase [14] follows the first method, and the 
solution space is significant and given by the number of objects 

squared times the number of predicates. The other approach in-
volves a significantly smaller solution space. The solution space 
denotes the sum of the number of objects and predicates, and 
two objects and predicate are separately detected. Two types of 
architectures follow this process. The first architecture employs 
an object detector and constructs a predicate classifier. The ob-
ject detector determines all objects in an image and object pairs 
are generated. The predicate classifier classifies the predicate 
via visual, semantic, and spatial cues. The second architecture 
adopts RPN [5] to generate feature maps. All components are 
independently detected in the convolution feature level. A few 
techniques are applied on the feature level such as region of in-
terest (ROI) pooling and bilinear interpolation.

There are two significant hurdles with respect to the afore-
mentioned tasks. The visual gap is high in two ways. Each vi-
sual relationship contains various appearances. {person, ride, 
motorcycle}'s appearance is based on person, motorcycle, 
pose, among others. The second, classifying a predicate based 
on two objects. The predicate can include many subjects and 
objects. “person” and “monkey” can correspond to subjects for 
the predicates “eat,” and “banana” can correspond to an object 
of the predicate “eat.” Therefore, the visual gap is significant 
even for the same predicate. The two datasets, namely VRD 
and VG [15,16], that are commonly used for this type of re-
search exhibit a long-tail distribution. Most visual relationships 
involve a person because a person is common in many images. 
The spatial predicate corresponds to a significant portion of 
the dataset. This is because the spatial property is present in 
every image and collecting visual relationship is expensive and 
labor-intensive for the other category's predicate. Most visual 
relationships are not present in the datasets. Therefore, the abil-
ity to detect unseen (zero-shot) performance is necessary.

A visual relationship is linked to language, visual, and 
spatial cues. The study looks into a language cue wherein 
certain predicates are reasonable only for certain subjects 
and objects. For example, “monkey” and “banana,” “talk,” 
“wear” are not suitable but “eat” is acceptable. A spatial 
cue between two objects can be found. Typically, “banana” 
is closer to the hand or mouth of “monkey.” A previous 
study [15] used the language cue termed as language prior, 
which is obtained by two losses termed as  and K in [15]. 
The  loss provides a likelihood based on the number of 
visual relationships in a training dataset. The K loss re-
quires a language module to semantically understand close 
visual relationships using two word vectors [17] for the 
subject and object. Another study [18] proposes a spatial 
vector to recognize the spatial property of a visual relation-
ship. Based on the aforementioned studies, the proposed 
model improves on performance without using the  and 
K losses. However, the objectives are simply obtained, and 
a more sophisticated spatial vector is proposed. The struc-
tural problem of the two losses in [15] is determined and 
solved by spatial cues to detect all types of zero-shot visual 

F I G U R E  1  An example of visual relationships
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relationships. The third problem in the field is termed as 
class-overlapping, which is revealed and explained in detail 
herein. The study uses the second method and first type 
of architecture. Faster-RCNN [5] corresponds to an object 
detector, and VGG16 [1] is used as a predicate classifier. 
Figure 2 shows an overview of the study.

All experiments are performed on the visual relationship 
detection (VRD) and visual genome (VG) datasets [15,16]. 
The study is based on the aforementioned two studies and 
another study [19] that used the region module to [15].

2 |  RELATED WORK

Object classification is a fundamental task in the field of 
computer vision. In deep learning, researchers stack sev-
eral convolution and fully connected layers and use them to 
classify objects in an image while maintaining balance be-
tween the number of filters and feature maps. VGG16 [1] is 
designed via this philosophy and involves many parameters 
from the visual geometry group at Oxford. RestNet [2] in-
cludes fewer parameters, more layers, and performs signifi-
cantly better than VGG16 by residual learning. A shortcut 
wherein an output of certain layer is added to a significantly 
deeper layer in a network is employed to prevent a gradient 
from disappearing during training in a deeper network, and 
the network learns residual terms. The VGG16 works as a 
predicate classifier in the study. The networks are termed as 
backbone networks and form the base of object detection.

Object detection corresponds to an advanced task and 
is based on an object classification task. An object detector 
classifies and localizes objects in an image. Faster-RCNN 
[5] denotes the representative one in this task. The backbone 

network extracts the object's feature in an image. Region 
proposal network (RPN) offers regions that exhibit a high 
probability of existing objects. ROI pooling is applied on the 
selected region to obtain meaningful features. A classifier 
and a bounding box coordinator detect objects. This is used 
as an object detection module.

Visual phrase [14] adopts the first method and uses three 
detectors for the subject, phrase, and object. The results 
from each detector are delivered to a decoding algorithm. 
The phrase detector denotes the main and is supported by 
the other two detectors. The visual phrase dataset is built al-
though it exhibits three thousand fewer images for both train-
ing and test.

Chao and others [20] focused on human-object interac-
tion, which is a type of visual relationship. The subject always 
corresponds to a human, and the predicate can be intransitive. 
In the study, they use three streams for the human, object, and 
pairwise and present the HICO-DET dataset. Binary masks 
are fed to the CNN to understand the relationship between a 
human and an object. The result from the three results undergo 
element-wise summation to detect human-object interaction.

Gkiozari and others [21] extend Faster-RCNN [5] to detect 
interaction between a human and an object. A human-centric 
and interaction branch are coupled on the Faster-RCNN. The 
image-centric training method and cascade inference wherein 
the time complex is linear are invented. The proposed model 
conducts experiments on HICO-DET [20] and V-COCO 
[22], and the highest score is obtained when compared with 
other studies.

Bo and others [23] proposed DR-net that uses a revised 
conditional random field (CRF) in a deep neural network. A 
predicate is considered as a feature combined with features 
from a spatial module and features from a backbone network 

F I G U R E  2  Overview of a visual relationship detection model
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for a subject and an object. A subject and an object are rep-
resented by combining a feature from an object detector, an 
embedded feature, and the predicate feature.

Li and others [24] used RPN to obtain candidate regions for 
the subject, predicate, object on the feature level, and a visual 
relationship is detected. The study demonstrates that training 
RPN to observe visual relationships improves object detection 
performance. Triplet NMS reduces meaningless pair candidates 
and PMPS via convolution or fully connected layers shares fea-
tures from a subject and an object to a predicate and vice versa.

Zhang and others [25] used RPN to detect visual relation-
ships on the convolution feature level and embedded visual rela-
tionship in the relation space to avoid visual variants by setting 
an equation {“subject + predicate = object”}. As opposed to 
ROI pooling, bilinear interpolation is applied on selected can-
didates to produce a visual feature. Three components, namely 
a class probability vector, a location vector that encodes differ-
ences between a subject and an object, and the visual feature, 
are used to infer a predicate based on the subject and object.

Plummer and others [26] attempted to understand an image 
with a sentence in the natural language, which is termed as a 
caption. Single phrase cues (SPCs) and phrase-pair cues (PPCs) 
are proposed, a language parser is employed to divide the cap-
tion, and an object detector is used. By using several compo-
nents, a higher image understanding task is realized. In the 
study, it is possible to detect a visual relationship by using part 
of some components. The performance is improved although 
ten predicates are selected for only one object pair.

Liang and others [27] developed an object detector, 
namely an action graph, which was similar to a scene graph, 
and a deep reinforce network. The object detector detected 
objects in an image, and the action graph was constructed 
by the objects and transformed into attribute, predicate, and 
object states. The states corresponded to the inputs of the 
deep reinforce network. The network adopted RPN and used 
features of the image, subject, object, and phrase. The states 
were used to reinforce features of the subject, predicate, and 
object prior to the final decision.

Shang and others [28] developed a new method termed as 
video visual relationship detection and proposed a new video 
dataset. The original objects and predicates were re-arranged 
for the video task. The two steps involved in the task included 
relation feature extraction and relation modeling. The relation 
feature extraction step was based on combining class vectors, 
hand features, and relativity features. The relation modeling 
step established a trajectory for the given subject and object 
during video segmentation. A metric and task in experiment 
was changed for the video task. The proposed model obtained 
the highest score in the experiments.

Lu and others [15] proposed a model operated by vi-
sual and language modules. The study obtained a language 
prior via the language module that was used for classifying 
a predicate by  and K losses. Specifically,  loss denotes 

likelihood loss functions and provides the likelihood based 
on the number of visual relationships by ranking loss. The K 
loss allowed the language module to understand the distance 
between visual relationships based on word vectors by reduc-
ing the variance in sampled visual relationships. The visual 
module obtained predicate classification results via a linear 
operation using a CNN feature. Element-wise multiplication 
was applied to the results obtained from the two modules, 
and the final visual relationship was detected via the C loss, 
which corresponded to a type of ranking loss.

Yu and others [18] included linguistic knowledge distil-
lation from internal and external resources to detect visual 
relationships. The proposed spatial vector contained only the 
location and size of each object. A union box, word vector, 
and spatial vector were exploited on their model and a teach-
er-student network (jointly) detected visual relationships. The 
method improved the performance of general and zero-shot 
detection performance.

Zhu and others [19] added a region module and applied 
a sigmoid function on all modules. The other parameters are 
identical to those in [15]. The results from three modules are 
merged into one via element-wise multiplication, and the C 
loss was extended with the region module. The performance 
exhibited improvements over the original [15] although the 
zero-shot performance decreased.

3 |  NEW PROBLEM: CLASS-
OVERLAPPING

Class overlapping is a problem involved in detecting visual 
relationships. Figure 3 shows several examples of the same. 
Each predicate boundary is invaded by several predicates. 
This is mainly because some predicates exhibit almost 
identical meanings, and the annotations of each visual re-
lationship are not distinguishable irrespective of categories. 

F I G U R E  3  Class-overlapping
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Furthermore, a predicate is determined by the position of the 
objects. Thus, {person, next to, bus} can be changed to {per-
son, (in front of or behind), bus} based on the position and 
rotation of any two objects, and the annotation of the visual 
relationship varies based on the view angle of an image.

4 |  PROBLEM FROM THE 
BASELINES

In [15],  loss assigns an appropriate likelihood based on 
the frequency of a training dataset. This implies that zero 
likelihood is assigned to the visual relationship, which 
never occurs in the training dataset. However, the visual 
relationship consists of the same subject and object in a 
manner similar to visual relationships that occurred in the 
training dataset. This implies that a predicate establishes a 
zero-shot visual relationship. The K loss imposes the lan-
guage module produces a close likelihood to semantically 
similar visual relationships in which two subjects or/and 
objects word vector's distance is close in the two visual 
relationships and works based on word vector embedding 
space. If the subject or object or both word vectors in a vis-
ual relationship do not include any other close word vector 
in the word vector space, then the model does not assign 
a likelihood to the visual relationship. Thus, the model is 
unable to detect the zero-shot visual relationships via the 
two losses.

The previous spatial vector in [18] contains only a nor-
malized location and size for a subject and object. The vector 
does not include relative information on the subject and ob-
ject and includes more-precise coordinates and size for the 
normalized bounding box. It can only differentiate between 
two locations in a model. However, it is insufficient in terms 
of making the model consider spatial property based on the 
overlap ratio between two bounding boxes and each property 
of the predicates.

5 |  PROPOSED MODEL

5.1 | Overall pipeline

In Figure 2, an image is provided as input. Faster R-CNN [5] 
based on VGG16 [1] detects object(s) and pairs of objects 
termed as candidates are generated from the detected objects. 
Each pair of objects is fed to the predicate classifier and the 
spatial module with a pair of word vectors, a spatial vector, 
and a union box that includes the subject and object. The 
language and visual module produce results and multiplies it 
element-wise, and the softmax function is applied to obtain 
the final result. The result can be calibrated via the spatial 
module in several ways.

5.2 | Visual module

VGG16 operates as a visual module. This network is trained 
to classify a predicate based on two objects. The input cor-
responds to a union box that includes a subject and an object 
in a visual relationship, and the output corresponds to a predi-
cate classification result as shown in Figure 4.

5.3 | Language module

Equation (1) describes a language module that corresponds 
to a fully connected layer, and the input corresponds to two 
word vectors and the output corresponds to the likelihood for 
all predicates. W denotes the parameter and the dimension of W 
denotes the number of predicates × the sum of two word vec-
tors’ dimension, and b denotes the parameter and the dimension 
of b denotes the number of predicates dimension.

5.3.1 |  loss

Equation (2) expresses the  loss in [15]. W and b corre-
spond to parameters of the language module, m corresponds 
to a margin, and R and R′ correspond to different visual rela-
tionships, which include a subject and an object. If R is more 
frequent than R′ in a training dataset, then R exhibits a higher 
likelihood than R′. Therefore, the language module produces 
the likelihood based on the frequency given the minimization of 
the loss function. {person, eat, pizza} exhibits higher likelihood 
than {dog, ride, surfboard}. The latter is rare in images.

From Figure 5, all subjects are “person” and all objects are 
“pizza.” {person, eat, pizza} denotes the most visual relationship, 
{person, next to, pizza} denotes the least visual relationship. 
{person, hold, pizza} exhibits a moderate visual relationship. 
Training the language module with a softmax loss realizes 
the objective of the  loss. The language module observes the 

(1)
f (R,W,b)=W× [word vector(subject), word vector(object)]

+b where R is a triplet subject, predicate, object.

(2)L(W, b)=Σmax{f (R�, W, b)− f (R, W, b)+m, 0},∀R, R�.

F I G U R E  4  Visual module
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number of predicates based on the frequency. For example, “eat,” 
“hold,” and “next to” during training. Irrespective of the training 
batch order, the degree of each likelihood from the model de-
pends on the number of data in the training dataset and the sum 
of all likelihood is always one due to the softmax loss function.

5.3.2 | K loss

Equation (3) describes the K loss in [15]. var denotes the 
variance, and d(R, R′) denotes the sum of the cosine distance 
between the two visual relationships. The language module 
assigns similar likelihoods to close visual relationships and 
different likelihoods to far visual relationships by reducing the 
variance. Specifically, 50k visual relationships were sampled 
for the loss function. The likelihood of {person, drive, car} and 
{person, drive, truck} correspond to close visual relationships.

The language module can assign similar likelihoods to close 
visual relationships without K loss. The K loss is achieved when 
the two word vectors for the subject or/and object are close. 
For example, the language module produces nearly the same 
likelihood for {person, eat, pasta} and {person, eat, pizza} if 
“pasta” and “pizza” are close in the word vector space. This 
indicates that the model considers “pasta” and “pizza” as nearly 
the same. Figure 6 shows the aforementioned result.

5.4 | Spatial vector and module

5.4.1 | Spatial vector

The spatial vector in [18] contains concatenated individ-
ual location and size of a subject and an object in an image. 

However, related information such as IOU, cflag, and nor-
malized object location (x, y) based on the subject in an 
image are included in the proposed model as shown in (4). 
The cflag corresponds to a flag, which is one when an object 
includes another object, and otherwise it corresponds to zero. 
Ssubject and Sobject denote the size of each bounding box. Simage 
denotes the size of an image.

5.4.2 | Spatial module

The proposed spatial module is similar to the language mod-
ule to obtain a spatial prior. The module with a spatial vector 
as the input and a predicate classification result as the output 
is individually trained from the visual and language modules. 
The classification result is used to calibrate the model result. 
When a model observes some type of zero-shot visual rela-
tionship (as mentioned in the section entitled “Problem from 
the Baselines”), the likelihood is termed as an unreliable re-
sult because the maximum value among all likelihood is low, 
and the likelihood of most predicates is nearly identical. The 
aforementioned types of visual relationships can be deter-
mined by using a spatial module as shown in Figure 7. The 

(3)K(W, b) = var

(

{f (R�, W, b)− f (R, W, b)}2

d(R, R�)
,∀R, R�

)

.

(4)
[

IOU, x, y,
Ssubject

Simage

,
Sobject

Simage

, cflagsubject, cflagobject

]

.

F I G U R E  5  Example: Training dataset

Training dataset

<person-eat-pizza> * 7

<person-hold-pizza> * 2

<person-next to-pizza> * 1

F I G U R E  6  Word vector space

<pizza>

<pasta>

<person>

F I G U R E  7  Spatial module calibration
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spatial module only considers the spatial property for a given 
subject and object. The result from the module supports the 
result from the model via calibration.

5.5 | Model explanation

A model can consist of each module or both modules. This 
implies that a language or visual module can correspond to 
a model and language and visual modules can collectively 
constitute a model. All models produce predicate classifica-
tion result. The spatial vector can be concatenated to the lan-
guage module. Subsequently, the language model (L), and 
language and spatial model (LSV) are available and termed 
as the language-based model. The spatial and/or word vector 
can be concatenated to a visual module. The visual model 
(U), and visual and word vector model (UW), and spatial 
and visual model (SVU), and spatial, visual and word vec-
tor model (SVUW) are available and termed as visual-based 
model. The two based models can work jointly, that is, 
LSV + SVUW. The results of each model are element-wise 
multiplied, and softmax is applied to obtain the final detec-
tion result as shown in Figure 2. With respect to the language 
based models, word vectors or concatenated word and spa-
tial vectors are fed to a fully connected layer. With respect 
to the visual based models, visual feature from VGG, spatial 
and/or word vectors are fed to a fully connected layer.

6 |  EXPERIMENT

A metric, namely top recall(R@n), was adopted as in [15], 
and “n” corresponds to 50, 100. The method that consid-
ers 1, 10, and 70 predicates as the detected predicates was 
employed based on [18]. “z” denotes the zero-shot perfor-
mance. Three experiments were conducted on the VRD and 
VG datasets as follows [15,18]: predicate prediction, phrase 
detection, and relationship detection. The predicate predic-
tion input corresponded to an image with two localized ob-
jects with classes, and the output corresponded to the proper 
predicate. The phrase detection input corresponded to an 
image, and output corresponded to a visual relationship with 
a bounding box that includes subject, predicate, and object. 
The relationship detection input corresponded to an image, 
and the output corresponded to a visual relationship with two 
boxes for the subject and object. The latter two tests require 
object detection results. Therefore, the object detection result 
from [15] was used and test results are compared with the test 
results obtained by [15,19], and the object detection module 
was trained and test results are compared with the test results 
obtained by [18]. Additional experiments were conducted to 
verify the effectiveness of the proposed spatial vector and 
module in terms of predicate prediction.

6.1 | Predicate prediction

As shown in Table 1, the L + U model exhibits better per-
formance than that of the VRD in which the language prior 
is obtained by the  and K losses. This indicates that the pro-
posed simple method is better than using two losses to ob-
tain the language prior. The SVUW model outperforms the 
model with linguistic knowledge distillation and the model 
in [18] that uses three components. The result indicates that 
expensive distillation is not necessary and the proposed spa-
tial vector is more suitable for the task than the model in 
[18]. The LSV  +  SVUW exhibits better performance than 
all other models except the performance improvement for 
R@50, k = 1, and zero-shot is larger than VRD and the model 
that uses linguistic knowledge distillation in [18]. This is be-
cause the objective of the K loss is achieved as mentioned 
in [15]. The highest scores for the general and zero-shot are 
not obtained from the single model in [18]. However, the 
LSV + SVUW model obtains the highest score for general 
and zero-shot performance.

On the VG dataset, the proposed model significantly out-
performs the model in [18] without the language prior as 
shown in Table 2. The VG dataset used in [18] is not open 
to the public. A task that extracts the same category visual 
relationship in the VRD dataset was applied on the latest VG 
dataset.

6.2 | Phrase detection

As shown in Table 3, the proposed model outperforms all 
baselines. Specifically, the zero-shot score is twice that of 
the baselines. An important goal involves determining the 
merged box. This task is slightly more difficult than relation-
ship detection.

6.3 | Relationship Detection

As shown in Table 4, the proposed model achieves the highest 
score for relationship detection. The object detection module 
determines the wrong bounding boxes termed as false posi-
tives. This degrades the performance of the task.

6.4 | Spatial vector analysis

Table 5 details whether the new spatial vector is better than 
the spatial vector in [18]. Thus, the previous spatial vector 
was adopted in the model in the present study. The perfor-
mance decreased for the SVUW and LSV + SVUW models 
for all metrics. Additionally, the zero-shot performance de-
creased by approximately 3 and 6 percent points.
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6.5 | Calibration Using The Spatial Module

As shown in Table 6, spatial module improves model perfor-
mance. Three calibration methods were used in the experiment, 
namely calibrating all model results using element-wise mul-
tiplication, replacing the original result with the result from 
the spatial module when the original result is unreliable, and 
element-wise multiplication of the original result with the result 
from the spatial module when the original result is unreliable. A 
threshold is set to determine whether or not the result is unreli-
able. The result is unreliable if the maximum value among all 

the likelihoods is lower than the threshold. “*” denotes the first 
calibration. “T 0.1*” and “T 0.1 S” denote the second and third 
method, and the threshold corresponds to 0.1. The second or 
third method is used if the result is unreliable.

The zero-shot performance, k  =  1, is improved via the 
first method. All the results from the spatial module are un-
reliable, and the performance decreases when the threshold 
increases. With respect to the last method, determination of 
the threshold is important in terms of performance. Based 
on Table 6, thresholds corresponding to 0.2, 0.3 or 0.4 are 
appropriate for the model for zero-shot, k = 1.

T A B L E  1  Predicate prediction on the VRD dataset

 
R@50
k = 1

R@100
k = 1

R@50
k = 70

R@100
k = 70

R@50
k = 1, z

R@100
k = 1, z

R@50
k = 70, z

R@100
k = 70, z

VRD [15] 47.87 47.87 N/A N/A 8.45 8.45 N/A N/A

U + W + SF [18] 41.33 41.33 72.29 84.89 14.13 14.13 48.13 69.41

U + W + L:S [18] 42.98 42.98 71.83 84.94 13.89 13.89 51.37 72.53

U + W + L:T [18] 52.96 52.96 83.26 88.98 7.81 7.81 32.62 40.15

U + SF + L:S [18] 41.06 41.06 71.27 84.81 14.33 14.33 48.32 69.01

U + SF + L:T [18] 51.67 51.67 83.84 87.71 8.05 8.05 32.77 41.51

U + W + SF + L:S [18] 47.50 47.50 74.98 86.97 16.98 16.98 54.20 74.65

U + W + SF + L:T [18] 54.13 54.13 82.54 89.41 8.80 8.80 32.81 41.53

U + W + SF + L:T + S [18] 55.16 55.16 85.64 94.65 N/A N/A N/A N/A

R [19] 51.16 51.16 N/A N/A 12.98 12.98 N/A N/A

S [19] 47.33 47.33 N/A N/A 10.35 10.35 N/A N/A

R-S [19] 51.50 51.50 N/A N/A 14.60 14.60 N/A N/A

L 44.09 44.09 75.48 86.69 10.86 10.86 50.55 69.71

LSV 48.19 48.19 78.31 88.40 15.82 15.82 55.09 74.85

SVUW 48.57 48.57 78.04 88.30 16.85 16.85 55.77 74.85

L + U 49.77 49.77 79.99 88.81 14.88 14.88 54.40 72.51

LSV + UW 53.05 53.05 85.12 93.17 20.78 20.78 64.67 81.35

LSV + SVU 53.37 53.37 85.61 93.74 21.21 21.21 65.78 82.37

LSV + SVUW 55.16 55.16 88.88 95.18 21.38 21.38 64.49 83.49

In [18], “U” denotes the union box that includes two objects, “SF” denotes the spatial vector in their study, “W” denotes the word-embedding-based semantic repre-
sentation, “L” denotes the linguistic knowledge distillation, “S” denotes the student network, “T” denotes the teacher network, and “S + T” denotes the combination of 
two networks. In the study, “L” corresponds to a language module that uses word vectors, “SV” denotes the proposed spatial vector, “U” is identical to that in [18] and 
is termed as a visual module, “W” corresponds to a word vector in the visual module, and “+” implies that the two modules are placed before and after “+” are used 
together. Bold values mean the highest score for each metric.

T A B L E  2  Predicate prediction on VG dataset

 
R@50
k = 1

R@100
k = 1

R@50
k = 70

R@100
k = 70

R@50
k = 1, z

R@100
k = 1, z

R@50
k = 70, z

R@100
k = 70, z

U + W + SF + L:S 49.88 49.88 88.14 91.25 11.28 11.28 72.96 88.23

U + W + SF + L:T 55.02 55.02 91.47 94.92 3.94 3.94 47.62 62.99

U + W + SF + L:T + S 55.89 55.89 92.31 95.68 N/A N/A N/A N/A

SVUW 65.59 65.73 96.37 98.90 16.82 16.82 86.33 95.02

LSV + SVUW 70.99 71.12 97.98 99.37 19.68 19.68 89.00 95.72

The notations are identical to those in Table 1. Bold values mean the highest score for each metric.
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7 |  DETAIL STUDY

7.1 | Phrase and relation detection

The study uses separated object detection modules, and the exper-
iment results are based on the object detection results of the test 
images. The result from [15] by RCNN [3] is poor due to many 
false positives, missing objects, and incorrect bounding box(es). 
The predicate classifier is unable to correct this. Therefore, the 
score is significantly lower than the predicate prediction.

7.2 | How language and visual 
modules work

Following the VRD test dataset result, the language module de-
termines most of the visual relationship and the visual module 
supports it. Therefore, several of the final results match results 
from the language module. This implies that the language aspect 
is more important than the visual on visual relationship detection. 
All filters in the convolution layers are black and only one of the 
biases in fully connected layers are used for classifying predicates 
in the visual module. This is because the intra-class variance af-
fects the visual module due to the visual gap on the predicate.

7.3 | Effectiveness of the spatial vector

As shown in Table 5, the proposed spatial vector is better than 
the existing vector proposed by [18] in terms of predicate pre-
diction. The zero-shot and general performance drop occur 
for the model that uses the existing spatial vector [18]. A high 
amount of relative information is useful in distinguishing be-
tween (unseen) visual relationships. The cflag aids in better 
understanding the property of predicate such as “on” or “in.” 
The IOU provides the degree of overlapped area between 0 
and 1 for two boxes, and the normalized location aids the IOU 
because it corresponds to a vector. When an unseen (zero-shot) 
visual relationship is observed in the model, the spatial vector 
is potentially similar to training data. The aforementioned pa-
rameters (ie, IOU and normalized location) can support zero-
shot performance. Figure 8 shows two examples of visual 
relationships. If one of them corresponds to zero-shot visual 
relationship, then a possibility exists that it will be detected 
due to similarities with a person's pose, and two word vectors, 
namely “elephant,” “horse” are close in the embedding space.

7.4 | Degradation from class-overlapping

Figure 9 details why performance gain is not significant al-
though all components and a spatial module are applied to the 
model. In a predicate list, a few predicates exhibit an undistin-
guishable meaning. This leads to non-dominated classification 
(ambiguous) results. Although feature vectors are close, they 
are included in different classes such as “above” and “over.” 

T A B L E  5  Predicate prediction on VRD dataset to verify proposed spatial vector

 
R@50
k = 1

R@100
k = 1

R@50
k = 70

R@100
k = 70

R@50
k = 1, z

R@100
k = 1, z

R@50
k = 70, z

R@100
k = 70, z

(SF)UW 45.58 45.58 77.10 87.98 13.60 13.60 53.63 74.16

SVUW 48.57 48.57 78.04 88.30 16.85 16.85 55.77 74.85

L(SF)+(SF)UW 50.53 50.53 81.99 91.08 15.99 15.99 56.63 76.98

LSV + SVUW 55.16 55.16 88.88 95.18 21.38 21.38 64.49 83.49

The notations are identical to those in Table 1. “SF” denotes the spatial vector in [18]. Bold values mean the highest score for each metric.

T A B L E  6  Predicate prediction on the VRD dataset to verify the 
spatial module

 
R@50
k = 1

R@50
k = 70

R@50
k = 1, z

R@50
k = 70, z

LV + SVUW 55.16 88.88 21.38 64.50

* 53.99 87.26 22.75 66.38

T 0.1 S 55.15 88.84 21.85 64.49

T 0.2 S 55.10 88.63 22.07 64.67

T 0.3 S 53.94 86.61 21.12 63.81

T 0.4 S 50.95 83.59 20.61 62.27

T 0.1 * 55.16 88.84 21.38 64.49

T 0.2 * 55.25 88.09 22.24 62.87

T 0.3 * 55.19 84.69 22.49 60.51

T 0.4 * 54.77 82.42 23.09 58.51

The notations are identical to those in Table 1. Bold values mean the highest 
score for each metric.

F I G U R E  8  Semantically close visual relationships

<person-ride-elephant> <person-ride-horse>
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This classification can confuse the model. Additionally, per-
formance does not exhibit further improvements although all 
resources are applied to the model as shown in Table 1.

The two results from the spatial module and model are 
under class-overlapping. The calibrated result also falls under 
the aforementioned problem. Therefore, performance im-
provement due to the spatial module is not significant.

8 |  CONCLUSION

The results of the study exhibit significant improvements when 
compared with those of an extant study. However, improvement 
gain is effortless and cost-effective when compared with the use 
of linguistic knowledge distillation. The proposed spatial vector 
includes relative information on two objects in an image and ex-
hibits its effectiveness in terms of general and zero-shot visual 
relationship detection. All zero-shot visual relationships can be 
detected using the spatial module via calibration and the model 
performance is increased. Class-overlapping is first described 
and its effect on the deterioration of the model's performance in 
detecting visual relationship is demonstrated in the study.

9 |  SUBSEQUENCE WORK

A multi-visual relationship corresponds to the next research 
theme in this field. All categories can be simultaneously an-
notated between the two objects in an image. Therefore, the 
model can detect the visual relationship of several catego-
ries while avoiding class-overlapping. Existing ambiguities 
are removed between categories. Re-organizing the predicate 
and object list corresponds to an upcoming task. It is neces-
sary to merge redundant meaning predicates and objects to 
improve result classification.
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