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1  |   INTRODUCTION

Fault tolerance has become an indispensable requirement in 
the execution of workflow applications on large-scale dis-
tributed platforms. In some certain situations, the mean time 
between failures of computational resources may not exceed 
a few hours [1]. For a resilient application execution, fault-tol-
erance techniques have been widely used: resubmission, 
replication, and checkpointing [2]. Using these basic redun-
dancies may result in an unacceptable increase in the execu-
tion time and/or cost. Resubmission redundancy may result 
in unacceptable time overhead; especially for long-running 
tasks that may encounter multiple successive failures during 

execution, a significant amount of time may be consumed. 
Checkpointing redundancy is an improved version of the re-
submission technique, in which the execution state is saved to 
persistent storage at different points, for example, periodically 
and when a failure occurs, the execution is resumed from the 
most recently saved state and not from the beginning [3].

Meanwhile, in replication redundancy, if sufficient re-
sources are available for concurrent execution of task replicas 
and one replica succeeds at the least, the task succeeds with 
almost no time overhead. However, concurrent execution of 
task replicas is not always possible because (i) few resources 
may be provisioned (for cost reduction) and (ii) a large num-
ber of tasks may be executing concurrently in some duration. 
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Additionally, replication redundancy may result in an unac-
ceptable overprovisioning cost.

As each of these basic redundancies has its own draw-
backs, recent studies have combined these redundancies to 
reduce the overhead [4‒6]. In [4,5], a hybrid of replication 
and resubmission redundancies is proposed. In [6], a hybrid 
of replication and checkpointing is proposed assuming that 
checkpoint files can be exchanged among resources. In such 
a situation, once the execution of a replica fails, the most 
recent checkpoint file is requested from other resources. If 
even one of these replicas succeeds in a checkpointing in-
terval, other replicas can have its result and proceed further.

We herein propose a hybrid redundancy selection algo-
rithm based on combining resubmission, replication, and 
checkpointing redundancies. The problem of obtaining the 
appropriate combination of redundancies is divided into 
two subproblems: (i) first, we decide the set of tasks that are 
replicated and the number of replicas of each task; and (ii) 
subsequently, we determine the appropriate checkpointing 
scheme for tasks that require checkpointing. For small tasks 
whose execution time is less than the optimum checkpointing 
interval, we use the resubmission and replication techniques. 
That is, once a replica of such a task fails, we restart the 
execution on the same resource; when one of the replicas of 
the task succeeds, we cancel the execution of the other ones.

In using the checkpointing redundancy, we determine the 
optimal checkpointing interval [6‒9]. If checkpoint savings 
are extremely frequent, the failure-free overhead (overhead 
in the absence of failures) will be extremely high; if check-
points are extremely infrequent, a large amount of time will 
be wasted owing to re-computations of failed tasks.

We encounter a form of this problem, where multiple, 
say k, replicas of a task are being executed concurrently and 
checkpoint files are exchanged among the resources upon re-
quest. If q denotes the probability of failure in one interval, 
the probability of failure for all replicas is qk. As k increases, 
the optimal interval length increases. The effect of varying 
the checkpointing interval on the average execution time of a 
task when k replicas of the task are being executed is shown 
in Figure 1, for k = 1, 2, 3. The results show that the optimum 
value for checkpointing interval increases with k. Thus, when 
idle resources are available, we can increase the checkpoint-
ing interval (and reduce the failure-free overhead) by increas-
ing the number of task replicas. Furthermore, according to 
Figure 1, as the number of replicas increases, the deviation 
from the optimal interval length has a less significant impact 
on the redundancy overhead.

1.1  |  Motivation and contribution

To reduce the overhead, we propose a hybrid redundancy 
selection approach based on combining resubmission, 

replication, and checkpointing redundancies. In the pro-
posed approach, the redundancy selection is performed 
in two phases: (i) Computing an appropriate replication 
vector such that the processing capacity of all resources 
is used for task replication, and task replicas can be ex-
ecuted almost concurrently. (ii) Determining the optimal 
checkpointing interval of each task as a function of num-
ber of replicas, characteristics of tasks, and computational 
environment.

The basic idea of the proposed approach is as follows: 
First, idle durations of resources are found according to 
the graph structure and concurrency relations among tasks. 
Subsequently, these idle durations are used for increasing the 
number of replicas of the most competent tasks. Increasing 
the number of replicas of tasks decreases the resiliency over-
head in two aspects: (i) It increases the probability of success 
in each interval, and because only idle durations of resources 
are used for task replication, the waste of resources is min-
imized. (ii) As the number of replicas of a task increases, 
the optimal checkpointing interval increases; thus, the fail-
ure-free overhead decreases.

Our contribution is twofold: First, we propose a redun-
dancy selection algorithm, in which the number of replicas 
of tasks is determined with respect to the number of avail-
able resources and the number of replicas of concurrently 
executing tasks. To obtain the set of tasks that are likely 
to be executed concurrently, we introduce the concept of 
concurrency graph and propose a graph-theory–based al-
gorithm for computing this graph. The number of replicas 
of tasks is determined such that (i) all resources are used 
for executing additional replicas of tasks, (ii) more replicas 
are considered for more competent tasks, and (iii) the sum-
mation of the number of replicas of concurrently executing 
tasks is maintained less than or equal to the number of re-
sources. This guarantees that task replicas can be executed 
almost concurrently. In the proposed Extended Upward 
Rank Based (EURB) algorithm, provisioned resources are 

F I G U R E  1   Effect of varying checkpointing interval on average 
execution time of a long-running task in case of replication redundancy 
with k replicas for k = 1, 2, 3
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apportioned among concurrently executing tasks according 
to the Extended Upward Rank (EUR) metric, which indi-
cates the extent to which each task benefits from having 
additional replicas. Next, we formulate and address the 
problem of obtaining the optimal checkpointing interval in 
situations where checkpoint files can be exchanged among 
resources. Although a similar problem is addressed in [6], 
it is assumed that once a replica fails, it cannot be resumed 
immediately but has to wait until the next checkpointing 
time to restart. This assumption can be unreasonable espe-
cially in situations involving long checkpointing intervals. 
Hence, we address the problem herein in a more general 
form.

Section 2 describes our model of the application and the 
execution environment. In Section 3, we review some related 
studies. In Section 4, we present the proposed fault-tolerant 
approach. In Section 5, a comparison of the proposed algo-
rithm with some existing algorithms is presented. Finally, 
Section 6 provides concluding remarks.

2  |   SYSTEM MODEL

A precedence-constrained application is defined as follows:

Definition 1 (Workflow)
A workflow is a weighted directed acyclic graph (DAG) 
 = ( ,), where  ={t1, … , tn} is the set of tasks and  
is the set of task dependencies. The task size is assigned to 
each task, and the data size that is transferred from ti to tj is 
assigned to each dependency.

Using an ad hoc java-based simulator, we simulated 
a cloud service provider that offers several virtualized re-
sources S={s1, … , sm} with different quality of service 
(QoS) parameters, such as CPU type and memory size, as 
well as different prices as in [14]. The environment settings 
is based on four parameters: the number m = 5, average pro-
cessing capacity Pavg, average failure rate λavg, and average 
cost per billing period Cavg of computational resources. The 
processing capacities of the resources is uniformly selected 
from [0.5Pavg, 2Pavg] MIPS, that is, the fastest resource is ap-
proximately four times faster (and approximately four times 
more expensive) than the slowest. The billing period is as-
sumed to be half an hour and Cavg = 0.5 $. The user is charged 
based on the number of time periods and is charged fully for 
the last time interval even if he uses only a small fraction of 
it. We consider only sequential tasks, especially long-run-
ning ones, whose execution time is comparable to the mean 
time-to-failure of computational resources. We used addi-
tional resources not for parallel execution of tasks but for 
fault tolerance. Considering silent errors yields a completely 
different situation; therefore, in this study, we consider only 

fail-stops [27]. As in [3], the time-to-failure of resources is 
assumed to follow an exponential distribution with rate λ, 
which follows a normal distribution N(λavg  =  7.5  ×  10−7, 
σ = 2.0 × 10−7).

3  |   RELATED STUDIES

Most studies pertaining to this area assumed a fault-free en-
vironment. However, some studies have considered fault-
prone situations. While a large number of studies used only 
the resubmission technique, some researchers, such as [5,10], 
used the replication technique. In [10], a replication-based 
extension of the HEFT algorithm [11] is proposed, where k 
replicas of each task are scheduled instead of one. Having 
the same number of replicas for all tasks may result in an 
unacceptable overhead. Thus, in [5,12], a method is proposed 
for determining the number of replicas of each task with re-
spect to the characteristics of the task. Furthermore, in [13], a 
graph-based method is proposed for replicating tasks. Studies 
for guaranteeing or improving scheduling QoS have been 
performed [14‒16]. To reduce the effect of resource perfor-
mance fluctuations, the algorithm in [4] uses idle durations of 
resources for task replication.

As each of the basic redundancies has its own drawbacks 
and merits, some researchers have attempted to obtain the ap-
propriate combination of those redundancies [5,12,17‒19]. 
In [5], based on combining replication and resubmission 
redundancies, the Resubmission Impact (RI) heuristic is 
proposed. The number of replicas of each task in the RI heu-
ristic is determined according to how much workflow termi-
nation is delayed if resubmission redundancy is considered 
for that task. Furthermore, [17] considered a hybrid redun-
dancy based on combining resubmission and checkpointing 
redundancies.

A well-studied problem is that of obtaining the optimal 
checkpoint interval that minimizes the average execution 
time [3,20‒24]. The approximation of the optimum check-
point interval was initiated by Young [7]. Young established 
a simple mathematical equation for obtaining the optimal 
checkpoint interval. Furthermore, in [8], a more accurate 
approximation is proposed. None of the abovementioned 
studies considered replicated tasks. Rahman and others [6] 
proposed a mathematical model for minimizing the average 
execution time for multiple interdependent parallel pro-
cesses in the Volpex environment [25], each possibly with 
multiple replicas. In that study, it is assumed that once a 
replica fails in an interval, the resource receives the check-
point file from other resources processing other replicas of 
the task. Another assumption, which simplifies the prob-
lem significantly, is that when a replica fails, it cannot be 
resumed immediately but has to wait until the next check-
pointing to restart.



      |  391MOTALLEBI

In some studies, in addition to fail-stops, silent errors are 
considered [23,26‒29]. In [27], disk checkpointing is com-
bined with memory checkpointing. In [30], the problem of 
obtaining the optimal checkpointing scheme is examined for 
cases involving checkpoint files of different sizes. Finally, 
in [26], the same problem is studied for different failure 
behaviors.

4  |   REDUNDANCY SELECTION 
ALGORITHM

In this section, we describe the proposed algorithm for 
determining the appropriate redundancies for tasks in a 
workflow. We separate the redundancy selection problem 
into two subproblems: First, the replication vector, (.), 
is computed. (ti), the ith element of , which denotes the 
number of replicas of ti (i  =  1, …, n), is computed with 
respect to the number of provisioned resources, number of 
replicas of concurrently executing tasks, and the extent to 
which each task benefits from having additional replicas. 
Once the replication vector, (.), is computed, in the next 
phase, the optimal checkpointing interval of each task ti (if 
necessary) is computed as a function of (ti), failure rate, 
and checkpoint saving and recovery costs. In the remain-
der of this section, the proposed method for computing the 
replication vector will be explained, followed by the de-
scription of the technique for obtaining the checkpointing 
interval (ti) for each task ti. Table 1 lists the notation used 
in our discussion.

4.1  |  Computing the redundancy scheme

The main idea of the proposed algorithm for comput-
ing the replication vector is that one replica for each 
task is considered initially. Subsequently, while some 
resources are idle, we increase the number of replicas of 
the most competent task among the set of tasks whose 
number of replicas can be increased. To maximize the 
gain, in each round, we increase the number of replicas 
of the task that benefits the most from an additional rep-
lica. The number of replicas of ti can be increased if one 
idle resource at the least exists during the execution of 
ti. Assume m resources are provisioned and apportioned 
among the set of concurrently executing tasks. To verify 
whether idle resource(s) exist during the execution of 
ti, we should verify if the summation of the number of 
replicas of concurrently executing tasks is less than m. 
Hence, we introduce the concept of concurrency graph 
according to which we obtain the concurrency relations 
among tasks.

4.1.1  |  Concurrency graph

Consider a workflow  = ( ,) with the set   of tasks 
and the relation  denoting the dependencies among them. 
Assume that the transitive closure of  is denoted by ∗. 
For a pair of tasks ti and tj, if we have either (ti, tj)∈∗ or 
(tj, ti)∈∗, then ti and tj may not be executed concurrently. 
Thus, ti and tj are likely to be executed concurrently if and 
only if

where RT and R are the transpose and complement of R, respec-
tively. We use the terms concurrency relation and concurrency 
graph to refer to the relation  and the graph  = ( ,), respec-
tively. As an example, the concurrency graph of the workflow 
in Figure 2 is shown in Figure 3.

4.1.2  |  Algorithm

The concurrency graph, once computed, is decomposed 
into the set ={c1, … , ck} of its connected components. 
For example, consider the workflow graph of Figure  2, 
whose concurrency graph (Figure  3) is composed of five 
connected components. As tasks in a component cannot be 
executed concurrently with tasks in other components, the 
problem of selecting the appropriate redundancies for tasks 
in a workflow is separated in a divide-and-conquer manner 
into the same problem for each of its connected components. 

(1)(ti, tj)∈C=∗ ∪∗T

T A B L E  1   Notation used in explaining the proposed algorithm

Notation Description

 = ( ,) Workflow

 ={t1, … , t
n
} Set of workflow tasks


i

Execution time of ti
(t

i
) Number of replicas of ti

λ Average failure rate

(t
i
) Optimal checkpointing interval for ti

F I G U R E  2   Example of workflow application
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Thus, the appropriate redundancies for each connected 
component can be selected separately and independently. 
Next, we explain the proposed algorithm for computing the 
replication vector for a connected component. In this algo-
rithm, the available resources are apportioned among con-
current tasks, and more replicas and resources are assigned 
to more competent tasks. This means that the summation 
of the number of replicas of concurrently executing tasks 
should be maintained less than or equal to the number of re-
sources. As we need to obtain the maximal set of tasks that 
may be executed concurrently, we obtain the set of maxi-
mal cliques [32] in each connected component. For exam-
ple, consider the connected component c2 ={t1, … , t5} in 
Figure 3, which has the following set of maximal cliques:

Now, we describe the algorithm for the general case. 
Assume c is a connected component whose set of maximal 
cliques is denoted by Q. To obtain the replication vector for 
c, we first consider one replica for each task and subsequently 
compute the set possible of tasks, whose number of replicas 
can be increased as follows:

Now, while the set possible is nonempty, we obtain the 
most competent task tbest (Section 4.1.4) and increase (tbest).  
Subsequently, the set possible is recomputed and the proce-
dure is repeated until possible becomes empty. Table 2 shows 
the steps of the proposed algorithm, applied to the con-
nected component c2 of the concurrency graph in Figure 3. 
The proposed replication vector computation procedure is 
given in Algorithm 4. In the first two lines, the concurrency 
graph of  is computed and decomposed into its connected 

components. In the loop iteration of lines 3–14, each con-
nected component cr is processed independently. In line 4, 
we use the Bron-Kerbosch algorithm [32] to obtain the set of 
maximal cliques in cr. In the loop in lines 5–7, the number 
of replicas of all tasks is set to 1. In line 8, the set possible is 
computed. Subsequently, in the loop in lines 9–13, while the 
set possible is nonempty in lines 10 through 12, the number 
of replicas of the most competent task (according to Section 
4.1.4) tbest, (tbest) is incremented, and the set possible is re-
computed. Finally, in lines 15–17, the optimal checkpointing 

(2)
Q={q1 ={t1,t2}, q2 ={t1,t5}, q3 ={t2,t3,t4},

q4 ={t3,t4,t5}, q5 ={t4,t5}}.

(3)possible =

{
ti ∈ c|∀q∈Q ∙

(
ti ∈q⇒

∑

tj∈q

(tj)<m

)}
.

F I G U R E  3   Concurrency graph of 
workflow in Figure 2



      |  393MOTALLEBI

interval (ti) for each ti is determined according to Section 
4.2.

4.1.3  |  Extended upward rank metric

To increase the number of replicas of the most competent 
task, a metric is required to determine which task bene-
fits the most from an additional replica. In the following, 
we first introduce the concept of extended upward rank, 
rankeu(.); subsequently, we use this metric for determining 
the most competent task. The definition of the extended 
upward rank (rankeu(.)) metric is based on the concept of 
upward rank [11], which is recursively defined as follows:

where cij is the average communication cost of edge (ti, tj) and 
Ti is the average execution time of ti on a fault-free reference re-
source [11]. The reference resource is a virtual resource whose 
processing capacity is equal to the average processing capacity 
of all provisioned resources. In fact, ranku(ti) is our estimation 
of the execution time of the longest path from ti to the exist-
ing task, including the completion time of ti. We define the ex-
tended upward rank of ti, rankeu(ti) as a function of Ti,(ti) and 
the average failure rate.

Definition 2 [Extended Upward Rank (EUR)]
The extended upward rank, rankeu(ti,R(ti)) of a task ti is

where (ti,(ti)), the average execution time of ti on a fault-
prone reference resource is computed as follows.

The probability of failure in each execution trial is 1−e−�Ti.  
Thus, when (ti) replicas of the task are being processed 

concurrently, the probability of failure in all these replicas is 
(1−e−�Ti )(ti). Because the number of execution trials until 
success follows a geometric distribution, the time required for 
the successful execution of a task is.

where identically distributed random variables Tf ,1 through 
Tf ,(ti)

 denote the time-to-failure of the resources executing the 
1st to(ti)th replica of ti, respectively.

4.1.4  |  Obtaining the most competent task

Next, we describe the method for obtaining the most compe-
tent task among the set possible ={t1, … , tp} of tasks. First, the 
amount of decrease in the average execution of the remainder 
of the workflow that can be obtained by increasing the number 
of replicas of each task should be considered. When the number 
of replicas of a tasks ti is increased from (ti) to (ti)+1, g(ti), 
the amount of decrease in the EUR of ti is computed as follows:

Furthermore, the amount of decrease in the critical path 
length of the remainder of the application, denoted by g∗(ti), 
is computed as follows:

To compute gain(ti), that is, the gain for increasing the 
number of replicas of ti, we combine g(ti) and g*(ti) as 
gain(ti)=�g(ti)+ (1−�)g∗(ti), where 0≤�≤1. In this study, 
we have β = 0.5. To obtain the most competent task, we select 
the task tbest with the maximum gain(ti).

(4)ranku(ti)=

{
Ti, if ti is an exit node,

Ti+maxtj∈Succ(ti)
(cij+ ranku(tj)) else,

(5)
{

(ti,(ti)), if ti is an exit node,

(ti,(ti))+maxtj∈Succ(ti)
(cij+ rankeu(tj)) else,

(6)
(t

i
,(t

i
))

=T
i
+

(
1

(1−e−�T
i )(t

i
)
−1

)
×E

[
max (T

f ,1,… ,T
f ,(t

i
))
]

(7)g(ti)= rankeu

(
ti,(ti)

)
− rankeu

(
ti,(ti)+1

)
.

(8)
g∗(ti)=max

(
max

tj∈possible

rankeu(tj,(tj))

)

−max

(
max

tj∈possible�ti

rankeu(tj,(tj)), rankeu(ti,(ti)+1)

)
.

T A B L E  2   Steps of replication vector computation algorithm for connected component c2 of the concurrency graph in Figure 3

(t
i
)

possible

Summation of number of replicas of tasks in cliques

t1 t2 t3 t4 t5 {t2, t3, t4} {t3, t4, t5} {t1, t2} {t1, t5}

1 1 1 1 1 {t1,t2,t3,t4,t5} 3 3 2 2

1 1 2 1 1 {t1,t2,t3,t4,t5} 4 4 2 2

2 1 2 1 1 {t1,t2,t3,t4,t5} 4 4 3 3

3 1 2 1 1 {t1,t2,t3,t4,t5} 4 4 4 4

3 2 2 1 1 {t1,t5} 5 4 4 4

3 2 2 1 2 {} 4 5 4 5
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4.2  |  Optimal checkpointing interval

Next, we formulate the problem of obtaining the optimal 
checkpointing interval for a task ti. Assume that k replicas 
of ti are processed on k resources and when a resource saves 
a checkpoint file, all other resources are informed regarding 
the amount of progress such that they can request for the file 
when required. That is, once a replica fails, it can compare its 
progress against the others' and obtain the latest checkpoint 
file if required. For simplicity and without loss of generality, 
we assumed that the resources were identical in terms of both 
failure behavior and processing capacity.

Herein, the execution time and lag of ti are denoted by Tj 
and Li, respectively. Consider the problem of obtaining the 
optimal checkpoint interval, (ti) that minimizes the redun-
dancy overhead owing to rework and checkpoint saving and 
recovery. Herein, the checkpoint saving and recovery costs of 
ti are denoted by r and s, respectively. Assume that at time 0, 
the execution of all replicas is started and the checkpointing 
interval is c. The probability of encountering failure in [0, 
c] for each replica is q= ∫ c

0
�e−�zdz=1−p, where p= e−�c. 

Therefore, the number of successful replicas among k repli-
cas is a binomially distributed random variable with param-
eters k and p. Thus, the probability of j successful replicas 
succeeding is

Three cases are possible for j, the number of replicas that 
succeed: (i) j = k, the probability that all replicas successfully 
reach the checkpoint saving state at time c is P(j= k)=pk, in 
which case the time required for all replicas to save the check-
point file is j=k(c)= c+s. (ii) j  =  0, the probability of all 
replicas encountering failure before finishing the interval is 
P(j = 0) = qk, in which case the time wasted owing to failure is 
approximated by c, that is, j=0(c)=E[ max (Tf ,1,… ,Tf ,k)]≈ c.  
(iii) 0 < j < k, the probability that some replicas succeed and 
some fail is P(0 < j < k) = 1 – pk– qk. In this case, we have 
k – j failed and j successful replicas, each of which has to send 
the checkpoint file to (k –  j)/j failed resources, as shown in 
Figure 4. Thus, the time required is as follows:

where u and l are the time required for uploading the checkpoint 
file and the average latency among resources, respectively. We 
have

According to the discussion above, the average time re-
quired for all resources to either save or receive the check-
point file is obtained as follows:

We have

where ET(ti, c) denotes the time required for processing the 
replicas until the checkpoint file is saved, assuming that the 
checkpointing interval is c. The time required for executing 
the task ti is obtained as AET(ti, c)=T∕c×ET(ti, c). For brev-
ity, we omit the extended formula of AET(ti,c). To obtain the 
optimal value (ti) of c for which AET(ti, c) is minimized, 
we obtain the first partial derivative of AET(ti, c) with re-
spect to c and obtain the roots using the bisection method. 
The result is a function of (ti), checkpoint saving and re-
covery costs, failure rate, and network latency. Additionally, 
the first-order approximation of the optimal checkpointing 
interval of each task ti can be obtained as a function of (ti) 
and other characteristics of the computational environment. 
For tasks with different number of replicas, different formu-
las are obtained. The derivation of these formulas is beyond 
the scope of this study.

(9)P(j)=

(
m+n

m

)
pjqk−j.

(10)
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�
k

j

�
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�
(k− i)r+ i×

∑ k−j

j

w=1
(wu+ l)

�

k
,

(11)
0<j<k(c)= c+s+

(
r+ l−

u

2

) (
1−pk −qk

)
+

k−1∑

j=1

(
k

j

)
pjqk−j

(
uk

2j
−

j(r+ l)

k

)
.

(12)
ET(ti, c)=P(j=0)(j=0(c)+r+ET(ti, c))+

P(0< j< k)0<j<k(c)+P(j= k)j=k(c).

(13)
ET(ti, c)=qk(E[ max (Tf ,1,… ,Tf ,k)]+r+ET(ti,c))+

(1−pk −qk)1≤j≤k−1(c)+pk(c+s),
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5  |   PERFORMANCE EVALUATION

In this section, we evaluate the proposed algorithm, and com-
pare its performance against prior methods. The performance 
of the proposed algorithm is compared against the best 
combination of some recent studies: the method proposed 
by Rahman [6] for computing the optimal checkpointing 
interval combined with the (RI) heuristic [5] for obtaining 
the replication vector. To generate a synthetic workload, we 
develop a random task graph generation procedure similar 
to that in [33]. We use the following parameters to generate 
random task graphs: n, the number of tasks; Wmean =4.5 and 
Wmax =12, the average and maximum number of tasks in each 
level of the graph, respectively; Javg =2.5 and Davg =2.75, the 
average jump and average input (output) degree of nodes, re-
spectively. In addition to random workloads, we use some 
real-world applications namely Epigenomics, Montage, 
CyberShake, and SIPHT [31] to assess the performance of 
the proposed algorithm. The task sizes are uniformly se-
lected such that the execution time of tasks is [103,105] s and 
the task input/output data sizes are uniformly selected from 
[100, DSmax =8000] MB. The default number of tasks and 
computational resources in these experiments are 5 and 200, 
respectively. In the following, we study the effects of differ-
ent application and environment parameters on the relative 
performances of the algorithms.

5.1  |  Effects of different parameters

To evaluate the relative performance of different redun-
dancy selection algorithms in various situations, we assess 
the effects of different parameters, namely the number of re-
sources, application size, failure rate, and graph width on the 
execution time and cost of these algorithms. Furthermore, we 
perform a comparative study of the performances of different 
checkpointing schemes.

5.1.1  |  Number of resources

Figures 5 and 6 show the effects of varying the number of 
computational resources, m on the performances of differ-
ent algorithms. The results show that increasing m to reduce 
the execution time increases the execution cost. However, 
increasing the number of provisioned resources is beneficial 
only if it results in a significant time improvement at the ex-
pense of an acceptable cost increase. Therefore, according to 
Figures 5 and 6, the maximum number of resources in our 
experiments is set to 7. The results show that especially for 
cases with fewer resources, the proposed algorithm achieves 
a significant performance improvement in terms of both time 
and cost.

5.1.2  |  Application size

To assess the effect of varying the application size, these 
algorithms are applied on task graphs of different sizes. As 
shown in Figure  7, as application size increases, the rela-
tive performances of the algorithms remain the same, and 
the proposed algorithm achieves a significant improvement 
compared with prior algorithms.

5.1.3  |  Failure rate

To assess the effect of the average failure rate on the per-
formances of the algorithms, the algorithms are executed in 
environments with different failure rates. Figure 8 shows that 
the proposed algorithm achieves a significant improvement 
for all failure rates.

5.1.4  |  Graph width

Figure 9 shows the effect of varying the average graph width 
on the performance of the algorithms. The results show that 
the proposed algorithm outperforms the previous algorithm 
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for applications with different graph widths, especially for 
applications with wider graphs.

5.1.5  |  Real-world applications

Additionally, we conducted experiments for assessing 
the performances of the algorithms for real-world ap-
plications, namely Epigenomics, Montage, CyberShake, 
and SIPHT. As shown in Figure 10, we assessed the per-
formances of the algorithms for these applications in 

terms of the average execution time. The results show 
that the proposed algorithm performs well for real-world 
applications.

5.1.6  |  Comparison of checkpointing schemes

The benefit of the proposed approach is attributed to two 
reasons: (i) the proposed replication method (EURB) and 
(ii) the proposed checkpointing scheme (CX). To assess 
the effects of each of these two aspects, we studied dif-
ferent combinations of the replication methods (EURB 
and RI) and checkpointing schemes, CX, the scheme pro-
posed by Rahman et al. (Rahman), and a checkpointing 
scheme without exchanging checkpoint files (CNX). To 
assess the effect of the checkpointing scheme, the EURB 
replication method is combined with two checkpointing 
schemes, CX and Rahman. Figure 11 shows that the CX, 
which is obtained by relaxing the simplifying assumption 
in Rahman's work, achieves a better performance relative 
to the Rahman scheme for all failure rates. Furthermore, 
as shown in Figure 12, all combinations of the replication 
methods (EURB and RI) and checkpointing schemes CX 
and CNX are compared. The results show that the effect 
of the EURB replication method is more significant than 
that of CX.

5.1.7  |  Other failure distributions

Furthermore, we assessed the relative performance of the 
redundancy selection algorithms on computing environ-
ments with more general time-to-failure distributions. 
We considered Weibull and Pareto distributions for the 
time-to-failure of resources. The parameters of these dis-
tributions were selected according to [34]. The results 
depicted in Figure  13 shows that the proposed approach 
performs efficiently for Weibull and Pareto time-to- 
failure distributions.
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6  |   CONCLUSIONS

We focused on the problem of selecting the appropriate 
fault-tolerance strategies for scheduling workflow tasks 
in fault-prone environments. To reduce the redundancy 
overhead, we combined resubmission, replication, and 
checkpoint redundancies. The appropriate redundancies of 
tasks were determined in two phases: First, the appropriate 
replication vector was obtained; subsequently, the optimal 
checkpointing interval of each task was computed. As the 

proposed algorithm used the idle durations of resources 
for task replication and checkpoint files were exchanged 
among resources, fewer checkpoints files were required 
to be saved; thus, the failure-free overhead was reduced. 
Furthermore, as the proposed algorithm apportioned the 
provisioned resources among concurrently executing tasks, 
it achieved a significant performance improvement com-
pared with prior studies, especially in situations with less 
resources.

Finally, because the simplifying assumption in a pre-
vious study was relaxed in our formulation of the optimal 
checkpointing problem, a better performance was achieved 
in terms of both time and cost. Our results demonstrated that 
both the proposed replication method and CX reduced the 
resiliency overhead.
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