
388  |  	﻿� ETRI Journal. 2020;42(3):388–398.wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

Fault tolerance has become an indispensable requirement in
the execution of workflow applications on large-scale dis-
tributed platforms. In some certain situations, the mean time
between failures of computational resources may not exceed
a few hours [1]. For a resilient application execution, fault-tol-
erance techniques have been widely used: resubmission,
replication, and checkpointing [2]. Using these basic redun-
dancies may result in an unacceptable increase in the execu-
tion time and/or cost. Resubmission redundancy may result
in unacceptable time overhead; especially for long-running
tasks that may encounter multiple successive failures during

execution, a significant amount of time may be consumed.
Checkpointing redundancy is an improved version of the re-
submission technique, in which the execution state is saved to
persistent storage at different points, for example, periodically
and when a failure occurs, the execution is resumed from the
most recently saved state and not from the beginning [3].

Meanwhile, in replication redundancy, if sufficient re-
sources are available for concurrent execution of task replicas
and one replica succeeds at the least, the task succeeds with
almost no time overhead. However, concurrent execution of
task replicas is not always possible because (i) few resources
may be provisioned (for cost reduction) and (ii) a large num-
ber of tasks may be executing concurrently in some duration.

Received: 3 December 2018  |  Revised: 5 July 2019  |  Accepted: 14 August 2019

DOI: 10.4218/etrij.2018-0684

O R I G I N A L A R T I C L E

Combining replication and checkpointing redundancies for
reducing resiliency overhead

Hassan Motallebi

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2020 ETRI

Department of Electrical and Computer
Engineering, Graduate University of
Advanced Technology, Kerman, Iran

Correspondence
Hassan Motallebi, Department of Electrical
and Computer Engineering, Graduate
University of Advanced Technology
(GUAT), Kerman, Iran.
Email: h.motallebi@kgut.ac.ir

Abstract
We herein propose a heuristic redundancy selection algorithm that combines resub-
mission, replication, and checkpointing redundancies to reduce the resiliency over-
head in fault-tolerant workflow scheduling. The appropriate combination of these
redundancies for workflow tasks is obtained in two consecutive phases. First, to
compute the replication vector (number of task replicas), we apportion the set of
provisioned resources among concurrently executing tasks according to their needs.
Subsequently, we obtain the optimal checkpointing interval for each task as a func-
tion of the number of replicas and characteristics of tasks and computational environ-
ment. We formulate the problem of obtaining the optimal checkpointing interval for
replicated tasks in situations where checkpoint files can be exchanged among com-
putational resources. The results of our simulation experiments, on both randomly
generated workflow graphs and real-world applications, demonstrated that both the
proposed replication vector computation algorithm and the proposed checkpointing
scheme reduced the resiliency overhead.

K E Y W O R D S

concurrency graph, extended upward rank, fault-tolerant scheduling, hybrid redundancy, resiliency
overhead

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿￼
https://orcid.org/0000-0001-5769-8532
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:h.motallebi@kgut.ac.ir

     |  389MOTALLEBI

Additionally, replication redundancy may result in an unac-
ceptable overprovisioning cost.

As each of these basic redundancies has its own draw-
backs, recent studies have combined these redundancies to
reduce the overhead [4‒6]. In [4,5], a hybrid of replication
and resubmission redundancies is proposed. In [6], a hybrid
of replication and checkpointing is proposed assuming that
checkpoint files can be exchanged among resources. In such
a situation, once the execution of a replica fails, the most
recent checkpoint file is requested from other resources. If
even one of these replicas succeeds in a checkpointing in-
terval, other replicas can have its result and proceed further.

We herein propose a hybrid redundancy selection algo-
rithm based on combining resubmission, replication, and
checkpointing redundancies. The problem of obtaining the
appropriate combination of redundancies is divided into
two subproblems: (i) first, we decide the set of tasks that are
replicated and the number of replicas of each task; and (ii)
subsequently, we determine the appropriate checkpointing
scheme for tasks that require checkpointing. For small tasks
whose execution time is less than the optimum checkpointing
interval, we use the resubmission and replication techniques.
That is, once a replica of such a task fails, we restart the
execution on the same resource; when one of the replicas of
the task succeeds, we cancel the execution of the other ones.

In using the checkpointing redundancy, we determine the
optimal checkpointing interval [6‒9]. If checkpoint savings
are extremely frequent, the failure-free overhead (overhead
in the absence of failures) will be extremely high; if check-
points are extremely infrequent, a large amount of time will
be wasted owing to re-computations of failed tasks.

We encounter a form of this problem, where multiple,
say k, replicas of a task are being executed concurrently and
checkpoint files are exchanged among the resources upon re-
quest. If q denotes the probability of failure in one interval,
the probability of failure for all replicas is qk. As k increases,
the optimal interval length increases. The effect of varying
the checkpointing interval on the average execution time of a
task when k replicas of the task are being executed is shown
in Figure 1, for k = 1, 2, 3. The results show that the optimum
value for checkpointing interval increases with k. Thus, when
idle resources are available, we can increase the checkpoint-
ing interval (and reduce the failure-free overhead) by increas-
ing the number of task replicas. Furthermore, according to
Figure 1, as the number of replicas increases, the deviation
from the optimal interval length has a less significant impact
on the redundancy overhead.

1.1  |  Motivation and contribution

To reduce the overhead, we propose a hybrid redundancy
selection approach based on combining resubmission,

replication, and checkpointing redundancies. In the pro-
posed approach, the redundancy selection is performed
in two phases: (i) Computing an appropriate replication
vector such that the processing capacity of all resources
is used for task replication, and task replicas can be ex-
ecuted almost concurrently. (ii) Determining the optimal
checkpointing interval of each task as a function of num-
ber of replicas, characteristics of tasks, and computational
environment.

The basic idea of the proposed approach is as follows:
First, idle durations of resources are found according to
the graph structure and concurrency relations among tasks.
Subsequently, these idle durations are used for increasing the
number of replicas of the most competent tasks. Increasing
the number of replicas of tasks decreases the resiliency over-
head in two aspects: (i) It increases the probability of success
in each interval, and because only idle durations of resources
are used for task replication, the waste of resources is min-
imized. (ii) As the number of replicas of a task increases,
the optimal checkpointing interval increases; thus, the fail-
ure-free overhead decreases.

Our contribution is twofold: First, we propose a redun-
dancy selection algorithm, in which the number of replicas
of tasks is determined with respect to the number of avail-
able resources and the number of replicas of concurrently
executing tasks. To obtain the set of tasks that are likely
to be executed concurrently, we introduce the concept of
concurrency graph and propose a graph-theory–based al-
gorithm for computing this graph. The number of replicas
of tasks is determined such that (i) all resources are used
for executing additional replicas of tasks, (ii) more replicas
are considered for more competent tasks, and (iii) the sum-
mation of the number of replicas of concurrently executing
tasks is maintained less than or equal to the number of re-
sources. This guarantees that task replicas can be executed
almost concurrently. In the proposed Extended Upward
Rank Based (EURB) algorithm, provisioned resources are

F I G U R E 1   Effect of varying checkpointing interval on average
execution time of a long-running task in case of replication redundancy
with k replicas for k = 1, 2, 3

Checkpointing interval

200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
er

ag
e

ex
ec

u
ti

o
n
 t

im
e

2900

3000

3100

3200

3300

3400

3500

3600

3700

3800
R(t) = 1

R(t) = 2

R(t) = 3

390  |     MOTALLEBI

apportioned among concurrently executing tasks according
to the Extended Upward Rank (EUR) metric, which indi-
cates the extent to which each task benefits from having
additional replicas. Next, we formulate and address the
problem of obtaining the optimal checkpointing interval in
situations where checkpoint files can be exchanged among
resources. Although a similar problem is addressed in [6],
it is assumed that once a replica fails, it cannot be resumed
immediately but has to wait until the next checkpointing
time to restart. This assumption can be unreasonable espe-
cially in situations involving long checkpointing intervals.
Hence, we address the problem herein in a more general
form.

Section 2 describes our model of the application and the
execution environment. In Section 3, we review some related
studies. In Section 4, we present the proposed fault-tolerant
approach. In Section 5, a comparison of the proposed algo-
rithm with some existing algorithms is presented. Finally,
Section 6 provides concluding remarks.

2  |   SYSTEM MODEL

A precedence-constrained application is defined as follows:

Definition 1 (Workflow)
A workflow is a weighted directed acyclic graph (DAG)
 = ( ,), where  ={t1, … , tn} is the set of tasks and 
is the set of task dependencies. The task size is assigned to
each task, and the data size that is transferred from ti to tj is
assigned to each dependency.

Using an ad hoc java-based simulator, we simulated
a cloud service provider that offers several virtualized re-
sources S={s1, … , sm} with different quality of service
(QoS) parameters, such as CPU type and memory size, as
well as different prices as in [14]. The environment settings
is based on four parameters: the number m = 5, average pro-
cessing capacity Pavg, average failure rate λavg, and average
cost per billing period Cavg of computational resources. The
processing capacities of the resources is uniformly selected
from [0.5Pavg, 2Pavg] MIPS, that is, the fastest resource is ap-
proximately four times faster (and approximately four times
more expensive) than the slowest. The billing period is as-
sumed to be half an hour and Cavg = 0.5 $. The user is charged
based on the number of time periods and is charged fully for
the last time interval even if he uses only a small fraction of
it. We consider only sequential tasks, especially long-run-
ning ones, whose execution time is comparable to the mean
time-to-failure of computational resources. We used addi-
tional resources not for parallel execution of tasks but for
fault tolerance. Considering silent errors yields a completely
different situation; therefore, in this study, we consider only

fail-stops [27]. As in [3], the time-to-failure of resources is
assumed to follow an exponential distribution with rate λ,
which follows a normal distribution N(λavg = 7.5 × 10−7,
σ = 2.0 × 10−7).

3  |   RELATED STUDIES

Most studies pertaining to this area assumed a fault-free en-
vironment. However, some studies have considered fault-
prone situations. While a large number of studies used only
the resubmission technique, some researchers, such as [5,10],
used the replication technique. In [10], a replication-based
extension of the HEFT algorithm [11] is proposed, where k
replicas of each task are scheduled instead of one. Having
the same number of replicas for all tasks may result in an
unacceptable overhead. Thus, in [5,12], a method is proposed
for determining the number of replicas of each task with re-
spect to the characteristics of the task. Furthermore, in [13], a
graph-based method is proposed for replicating tasks. Studies
for guaranteeing or improving scheduling QoS have been
performed [14‒16]. To reduce the effect of resource perfor-
mance fluctuations, the algorithm in [4] uses idle durations of
resources for task replication.

As each of the basic redundancies has its own drawbacks
and merits, some researchers have attempted to obtain the ap-
propriate combination of those redundancies [5,12,17‒19].
In [5], based on combining replication and resubmission
redundancies, the Resubmission Impact (RI) heuristic is
proposed. The number of replicas of each task in the RI heu-
ristic is determined according to how much workflow termi-
nation is delayed if resubmission redundancy is considered
for that task. Furthermore, [17] considered a hybrid redun-
dancy based on combining resubmission and checkpointing
redundancies.

A well-studied problem is that of obtaining the optimal
checkpoint interval that minimizes the average execution
time [3,20‒24]. The approximation of the optimum check-
point interval was initiated by Young [7]. Young established
a simple mathematical equation for obtaining the optimal
checkpoint interval. Furthermore, in [8], a more accurate
approximation is proposed. None of the abovementioned
studies considered replicated tasks. Rahman and others [6]
proposed a mathematical model for minimizing the average
execution time for multiple interdependent parallel pro-
cesses in the Volpex environment [25], each possibly with
multiple replicas. In that study, it is assumed that once a
replica fails in an interval, the resource receives the check-
point file from other resources processing other replicas of
the task. Another assumption, which simplifies the prob-
lem significantly, is that when a replica fails, it cannot be
resumed immediately but has to wait until the next check-
pointing to restart.

     |  391MOTALLEBI

In some studies, in addition to fail-stops, silent errors are
considered [23,26‒29]. In [27], disk checkpointing is com-
bined with memory checkpointing. In [30], the problem of
obtaining the optimal checkpointing scheme is examined for
cases involving checkpoint files of different sizes. Finally,
in [26], the same problem is studied for different failure
behaviors.

4  |   REDUNDANCY SELECTION
ALGORITHM

In this section, we describe the proposed algorithm for
determining the appropriate redundancies for tasks in a
workflow. We separate the redundancy selection problem
into two subproblems: First, the replication vector, (.),
is computed. (ti), the ith element of , which denotes the
number of replicas of ti (i = 1, …, n), is computed with
respect to the number of provisioned resources, number of
replicas of concurrently executing tasks, and the extent to
which each task benefits from having additional replicas.
Once the replication vector, (.), is computed, in the next
phase, the optimal checkpointing interval of each task ti (if
necessary) is computed as a function of (ti), failure rate,
and checkpoint saving and recovery costs. In the remain-
der of this section, the proposed method for computing the
replication vector will be explained, followed by the de-
scription of the technique for obtaining the checkpointing
interval (ti) for each task ti. Table 1 lists the notation used
in our discussion.

4.1  |  Computing the redundancy scheme

The main idea of the proposed algorithm for comput-
ing the replication vector is that one replica for each
task is considered initially. Subsequently, while some
resources are idle, we increase the number of replicas of
the most competent task among the set of tasks whose
number of replicas can be increased. To maximize the
gain, in each round, we increase the number of replicas
of the task that benefits the most from an additional rep-
lica. The number of replicas of ti can be increased if one
idle resource at the least exists during the execution of
ti. Assume m resources are provisioned and apportioned
among the set of concurrently executing tasks. To verify
whether idle resource(s) exist during the execution of
ti, we should verify if the summation of the number of
replicas of concurrently executing tasks is less than m.
Hence, we introduce the concept of concurrency graph
according to which we obtain the concurrency relations
among tasks.

4.1.1  |  Concurrency graph

Consider a workflow  = ( ,) with the set  of tasks
and the relation  denoting the dependencies among them.
Assume that the transitive closure of  is denoted by ∗.
For a pair of tasks ti and tj, if we have either (ti, tj)∈∗ or
(tj, ti)∈∗, then ti and tj may not be executed concurrently.
Thus, ti and tj are likely to be executed concurrently if and
only if

where RT and R are the transpose and complement of R, respec-
tively. We use the terms concurrency relation and concurrency
graph to refer to the relation  and the graph  = ( ,), respec-
tively. As an example, the concurrency graph of the workflow
in Figure 2 is shown in Figure 3.

4.1.2  |  Algorithm

The concurrency graph, once computed, is decomposed
into the set ={c1, … , ck} of its connected components.
For example, consider the workflow graph of Figure 2,
whose concurrency graph (Figure 3) is composed of five
connected components. As tasks in a component cannot be
executed concurrently with tasks in other components, the
problem of selecting the appropriate redundancies for tasks
in a workflow is separated in a divide-and-conquer manner
into the same problem for each of its connected components.

(1)(ti, tj)∈C=∗ ∪∗T

T A B L E 1   Notation used in explaining the proposed algorithm

Notation Description

 = ( ,) Workflow

 ={t1, … , t
n
} Set of workflow tasks


i

Execution time of ti
(t

i
) Number of replicas of ti

λ Average failure rate

(t
i
) Optimal checkpointing interval for ti

F I G U R E 2   Example of workflow application

1

2

3

4

5

0 6

7

8

9

392  |     MOTALLEBI

Thus, the appropriate redundancies for each connected
component can be selected separately and independently.
Next, we explain the proposed algorithm for computing the
replication vector for a connected component. In this algo-
rithm, the available resources are apportioned among con-
current tasks, and more replicas and resources are assigned
to more competent tasks. This means that the summation
of the number of replicas of concurrently executing tasks
should be maintained less than or equal to the number of re-
sources. As we need to obtain the maximal set of tasks that
may be executed concurrently, we obtain the set of maxi-
mal cliques [32] in each connected component. For exam-
ple, consider the connected component c2 ={t1, … , t5} in
Figure 3, which has the following set of maximal cliques:

Now, we describe the algorithm for the general case.
Assume c is a connected component whose set of maximal
cliques is denoted by Q. To obtain the replication vector for
c, we first consider one replica for each task and subsequently
compute the set possible of tasks, whose number of replicas
can be increased as follows:

Now, while the set possible is nonempty, we obtain the
most competent task tbest (Section 4.1.4) and increase (tbest).
Subsequently, the set possible is recomputed and the proce-
dure is repeated until possible becomes empty. Table 2 shows
the steps of the proposed algorithm, applied to the con-
nected component c2 of the concurrency graph in Figure 3.
The proposed replication vector computation procedure is
given in Algorithm 4. In the first two lines, the concurrency
graph of  is computed and decomposed into its connected

components. In the loop iteration of lines 3–14, each con-
nected component cr is processed independently. In line 4,
we use the Bron-Kerbosch algorithm [32] to obtain the set of
maximal cliques in cr. In the loop in lines 5–7, the number
of replicas of all tasks is set to 1. In line 8, the set possible is
computed. Subsequently, in the loop in lines 9–13, while the
set possible is nonempty in lines 10 through 12, the number
of replicas of the most competent task (according to Section
4.1.4) tbest, (tbest) is incremented, and the set possible is re-
computed. Finally, in lines 15–17, the optimal checkpointing

(2)
Q={q1 ={t1,t2}, q2 ={t1,t5}, q3 ={t2,t3,t4},

q4 ={t3,t4,t5}, q5 ={t4,t5}}.

(3)possible =

{
ti ∈ c|∀q∈Q ∙

(
ti ∈q⇒

∑

tj∈q

(tj)<m

)}
.

F I G U R E 3   Concurrency graph of
workflow in Figure 2

     |  393MOTALLEBI

interval (ti) for each ti is determined according to Section
4.2.

4.1.3  |  Extended upward rank metric

To increase the number of replicas of the most competent
task, a metric is required to determine which task bene-
fits the most from an additional replica. In the following,
we first introduce the concept of extended upward rank,
rankeu(.); subsequently, we use this metric for determining
the most competent task. The definition of the extended
upward rank (rankeu(.)) metric is based on the concept of
upward rank [11], which is recursively defined as follows:

where cij is the average communication cost of edge (ti, tj) and
Ti is the average execution time of ti on a fault-free reference re-
source [11]. The reference resource is a virtual resource whose
processing capacity is equal to the average processing capacity
of all provisioned resources. In fact, ranku(ti) is our estimation
of the execution time of the longest path from ti to the exist-
ing task, including the completion time of ti. We define the ex-
tended upward rank of ti, rankeu(ti) as a function of Ti,(ti) and
the average failure rate.

Definition 2 [Extended Upward Rank (EUR)]
The extended upward rank, rankeu(ti,R(ti)) of a task ti is

where (ti,(ti)), the average execution time of ti on a fault-
prone reference resource is computed as follows.

The probability of failure in each execution trial is 1−e−�Ti.
Thus, when (ti) replicas of the task are being processed

concurrently, the probability of failure in all these replicas is
(1−e−�Ti)(ti). Because the number of execution trials until
success follows a geometric distribution, the time required for
the successful execution of a task is.

where identically distributed random variables Tf ,1 through
Tf ,(ti)

 denote the time-to-failure of the resources executing the
1st to(ti)th replica of ti, respectively.

4.1.4  |  Obtaining the most competent task

Next, we describe the method for obtaining the most compe-
tent task among the set possible ={t1, … , tp} of tasks. First, the
amount of decrease in the average execution of the remainder
of the workflow that can be obtained by increasing the number
of replicas of each task should be considered. When the number
of replicas of a tasks ti is increased from (ti) to (ti)+1, g(ti),
the amount of decrease in the EUR of ti is computed as follows:

Furthermore, the amount of decrease in the critical path
length of the remainder of the application, denoted by g∗(ti),
is computed as follows:

To compute gain(ti), that is, the gain for increasing the
number of replicas of ti, we combine g(ti) and g*(ti) as
gain(ti)=�g(ti)+ (1−�)g∗(ti), where 0≤�≤1. In this study,
we have β = 0.5. To obtain the most competent task, we select
the task tbest with the maximum gain(ti).

(4)ranku(ti)=

{
Ti, if ti is an exit node,

Ti+maxtj∈Succ(ti)
(cij+ ranku(tj)) else,

(5)
{

(ti,(ti)), if ti is an exit node,

(ti,(ti))+maxtj∈Succ(ti)
(cij+ rankeu(tj)) else,

(6)
(t

i
,(t

i
))

=T
i
+

(
1

(1−e−�T
i)(t

i
)
−1

)
×E

[
max (T

f ,1,… ,T
f ,(t

i
))
]

(7)g(ti)= rankeu

(
ti,(ti)

)
− rankeu

(
ti,(ti)+1

)
.

(8)
g∗(ti)=max

(
max

tj∈possible

rankeu(tj,(tj))

)

−max

(
max

tj∈possible�ti

rankeu(tj,(tj)), rankeu(ti,(ti)+1)

)
.

T A B L E 2   Steps of replication vector computation algorithm for connected component c2 of the concurrency graph in Figure 3

(t
i
)

possible

Summation of number of replicas of tasks in cliques

t1 t2 t3 t4 t5 {t2, t3, t4} {t3, t4, t5} {t1, t2} {t1, t5}

1 1 1 1 1 {t1,t2,t3,t4,t5} 3 3 2 2

1 1 2 1 1 {t1,t2,t3,t4,t5} 4 4 2 2

2 1 2 1 1 {t1,t2,t3,t4,t5} 4 4 3 3

3 1 2 1 1 {t1,t2,t3,t4,t5} 4 4 4 4

3 2 2 1 1 {t1,t5} 5 4 4 4

3 2 2 1 2 {} 4 5 4 5

394  |     MOTALLEBI

4.2  |  Optimal checkpointing interval

Next, we formulate the problem of obtaining the optimal
checkpointing interval for a task ti. Assume that k replicas
of ti are processed on k resources and when a resource saves
a checkpoint file, all other resources are informed regarding
the amount of progress such that they can request for the file
when required. That is, once a replica fails, it can compare its
progress against the others' and obtain the latest checkpoint
file if required. For simplicity and without loss of generality,
we assumed that the resources were identical in terms of both
failure behavior and processing capacity.

Herein, the execution time and lag of ti are denoted by Tj
and Li, respectively. Consider the problem of obtaining the
optimal checkpoint interval, (ti) that minimizes the redun-
dancy overhead owing to rework and checkpoint saving and
recovery. Herein, the checkpoint saving and recovery costs of
ti are denoted by r and s, respectively. Assume that at time 0,
the execution of all replicas is started and the checkpointing
interval is c. The probability of encountering failure in [0,
c] for each replica is q= ∫ c

0
�e−�zdz=1−p, where p= e−�c.

Therefore, the number of successful replicas among k repli-
cas is a binomially distributed random variable with param-
eters k and p. Thus, the probability of j successful replicas
succeeding is

Three cases are possible for j, the number of replicas that
succeed: (i) j = k, the probability that all replicas successfully
reach the checkpoint saving state at time c is P(j= k)=pk, in
which case the time required for all replicas to save the check-
point file is j=k(c)= c+s. (ii) j = 0, the probability of all
replicas encountering failure before finishing the interval is
P(j = 0) = qk, in which case the time wasted owing to failure is
approximated by c, that is, j=0(c)=E[max (Tf ,1,… ,Tf ,k)]≈ c.
(iii) 0 < j < k, the probability that some replicas succeed and
some fail is P(0 < j < k) = 1 – pk– qk. In this case, we have
k – j failed and j successful replicas, each of which has to send
the checkpoint file to (k – j)/j failed resources, as shown in
Figure 4. Thus, the time required is as follows:

where u and l are the time required for uploading the checkpoint
file and the average latency among resources, respectively. We
have

According to the discussion above, the average time re-
quired for all resources to either save or receive the check-
point file is obtained as follows:

We have

where ET(ti, c) denotes the time required for processing the
replicas until the checkpoint file is saved, assuming that the
checkpointing interval is c. The time required for executing
the task ti is obtained as AET(ti, c)=T∕c×ET(ti, c). For brev-
ity, we omit the extended formula of AET(ti,c). To obtain the
optimal value (ti) of c for which AET(ti, c) is minimized,
we obtain the first partial derivative of AET(ti, c) with re-
spect to c and obtain the roots using the bisection method.
The result is a function of (ti), checkpoint saving and re-
covery costs, failure rate, and network latency. Additionally,
the first-order approximation of the optimal checkpointing
interval of each task ti can be obtained as a function of (ti)
and other characteristics of the computational environment.
For tasks with different number of replicas, different formu-
las are obtained. The derivation of these formulas is beyond
the scope of this study.

(9)P(j)=

(
m+n

m

)
pjqk−j.

(10)

0<j<k(c)= c+s+

k−1�

j=1

�
k

j

�
pjqk−j

�
(k− i)r+ i×

∑ k−j

j

w=1
(wu+ l)

�

k
,

(11)
0<j<k(c)= c+s+

(
r+ l−

u

2

) (
1−pk −qk

)
+

k−1∑

j=1

(
k

j

)
pjqk−j

(
uk

2j
−

j(r+ l)

k

)
.

(12)
ET(ti, c)=P(j=0)(j=0(c)+r+ET(ti, c))+

P(0< j< k)0<j<k(c)+P(j= k)j=k(c).

(13)
ET(ti, c)=qk(E[max (Tf ,1,… ,Tf ,k)]+r+ET(ti,c))+

(1−pk −qk)1≤j≤k−1(c)+pk(c+s),

F I G U R E 4   Exchanging checkpoint
files among resources processing task
replicasFailure

Checkpoint

saving

Task

execution

Checkpoint

uploading
U

D

Checkpoint

recovery
R

Checkpoint

downloading
R

Failure

R

U

D

U

D R

R

c

     |  395MOTALLEBI

5  |   PERFORMANCE EVALUATION

In this section, we evaluate the proposed algorithm, and com-
pare its performance against prior methods. The performance
of the proposed algorithm is compared against the best
combination of some recent studies: the method proposed
by Rahman [6] for computing the optimal checkpointing
interval combined with the (RI) heuristic [5] for obtaining
the replication vector. To generate a synthetic workload, we
develop a random task graph generation procedure similar
to that in [33]. We use the following parameters to generate
random task graphs: n, the number of tasks; Wmean =4.5 and
Wmax =12, the average and maximum number of tasks in each
level of the graph, respectively; Javg =2.5 and Davg =2.75, the
average jump and average input (output) degree of nodes, re-
spectively. In addition to random workloads, we use some
real-world applications namely Epigenomics, Montage,
CyberShake, and SIPHT [31] to assess the performance of
the proposed algorithm. The task sizes are uniformly se-
lected such that the execution time of tasks is [103,105] s and
the task input/output data sizes are uniformly selected from
[100, DSmax =8000] MB. The default number of tasks and
computational resources in these experiments are 5 and 200,
respectively. In the following, we study the effects of differ-
ent application and environment parameters on the relative
performances of the algorithms.

5.1  |  Effects of different parameters

To evaluate the relative performance of different redun-
dancy selection algorithms in various situations, we assess
the effects of different parameters, namely the number of re-
sources, application size, failure rate, and graph width on the
execution time and cost of these algorithms. Furthermore, we
perform a comparative study of the performances of different
checkpointing schemes.

5.1.1  |  Number of resources

Figures 5 and 6 show the effects of varying the number of
computational resources, m on the performances of differ-
ent algorithms. The results show that increasing m to reduce
the execution time increases the execution cost. However,
increasing the number of provisioned resources is beneficial
only if it results in a significant time improvement at the ex-
pense of an acceptable cost increase. Therefore, according to
Figures 5 and 6, the maximum number of resources in our
experiments is set to 7. The results show that especially for
cases with fewer resources, the proposed algorithm achieves
a significant performance improvement in terms of both time
and cost.

5.1.2  |  Application size

To assess the effect of varying the application size, these
algorithms are applied on task graphs of different sizes. As
shown in Figure 7, as application size increases, the rela-
tive performances of the algorithms remain the same, and
the proposed algorithm achieves a significant improvement
compared with prior algorithms.

5.1.3  |  Failure rate

To assess the effect of the average failure rate on the per-
formances of the algorithms, the algorithms are executed in
environments with different failure rates. Figure 8 shows that
the proposed algorithm achieves a significant improvement
for all failure rates.

5.1.4  |  Graph width

Figure 9 shows the effect of varying the average graph width
on the performance of the algorithms. The results show that
the proposed algorithm outperforms the previous algorithm

F I G U R E 5   Effect of number of resources on average execution
time

4

Number of resources

2 3 5 6 7

A
v
er

ag
e

ex
ec

u
ti

o
n
 t

im
e

(s
)

×10
5

3

4

5

6

7

8
EURB + CX

RIH(3) + Rahman

RIH(2) + Rahman

F I G U R E 6   Effect of number of resources on average execution
cost

4

Number of resources

2 3 5 6 7

A
v

er
ag

e
ex

ec
u

ti
o

n
 c

o
st

 (
$

)

60

70

80

90

100

110

120

130

EURB + CX

RI(3) + Rahman

RI(2) + Rahman

396  |     MOTALLEBI

for applications with different graph widths, especially for
applications with wider graphs.

5.1.5  |  Real-world applications

Additionally, we conducted experiments for assessing
the performances of the algorithms for real-world ap-
plications, namely Epigenomics, Montage, CyberShake,
and SIPHT. As shown in Figure 10, we assessed the per-
formances of the algorithms for these applications in

terms of the average execution time. The results show
that the proposed algorithm performs well for real-world
applications.

5.1.6  |  Comparison of checkpointing schemes

The benefit of the proposed approach is attributed to two
reasons: (i) the proposed replication method (EURB) and
(ii) the proposed checkpointing scheme (CX). To assess
the effects of each of these two aspects, we studied dif-
ferent combinations of the replication methods (EURB
and RI) and checkpointing schemes, CX, the scheme pro-
posed by Rahman et al. (Rahman), and a checkpointing
scheme without exchanging checkpoint files (CNX). To
assess the effect of the checkpointing scheme, the EURB
replication method is combined with two checkpointing
schemes, CX and Rahman. Figure 11 shows that the CX,
which is obtained by relaxing the simplifying assumption
in Rahman's work, achieves a better performance relative
to the Rahman scheme for all failure rates. Furthermore,
as shown in Figure 12, all combinations of the replication
methods (EURB and RI) and checkpointing schemes CX
and CNX are compared. The results show that the effect
of the EURB replication method is more significant than
that of CX.

5.1.7  |  Other failure distributions

Furthermore, we assessed the relative performance of the
redundancy selection algorithms on computing environ-
ments with more general time-to-failure distributions.
We considered Weibull and Pareto distributions for the
time-to-failure of resources. The parameters of these dis-
tributions were selected according to [34]. The results
depicted in Figure 13 shows that the proposed approach
performs efficiently for Weibull and Pareto time-to-
failure distributions.

F I G U R E 7   Effect of application size on average execution time

300

Number of tasks

100 200 400 500

A
v

er
ag

e
ex

ec
u

ti
o

n
 t

im
e

(s
)

×10
5

0

2

4

6

8

10

12

F I G U R E 8   Effect of failure rate on average execution time

Average failure rate ×10
–7

0.02 0.82 1.62 2.42 3.22 4.02 4.82 5.62 6.42 7.22 8.02 8.82 9.62

A
v
er

ag
e

ex
ec

u
ti

o
n
 t

im
e

(s
)

×10
8

3.4

3.6

3.8

.0

F I G U R E 9   Effect of graph width on average execution time

Average task graph width

2.5 3.5 4.5 5.5 6.5 7.5

A
v
er

ag
e

ex
ec

u
ti

o
n
 t

im
e

(s
)

×10
5

2.5

3.0

3.5

4.0

4.5

5.0

5.5

.0

F I G U R E 1 0   Average execution time of real-world benchmark
applications

Application
CyberShake Epigenomics Montage SIPHT

A
v
er

ag
e

ex
ec

u
ti

o
n
 t

im
e

(s
)

×10
4

0

2

4

6

8

10

12

14
EURB + CX

RI(3) + Rahman

RI(2) + Rahman

     |  397MOTALLEBI

6  |   CONCLUSIONS

We focused on the problem of selecting the appropriate
fault-tolerance strategies for scheduling workflow tasks
in fault-prone environments. To reduce the redundancy
overhead, we combined resubmission, replication, and
checkpoint redundancies. The appropriate redundancies of
tasks were determined in two phases: First, the appropriate
replication vector was obtained; subsequently, the optimal
checkpointing interval of each task was computed. As the

proposed algorithm used the idle durations of resources
for task replication and checkpoint files were exchanged
among resources, fewer checkpoints files were required
to be saved; thus, the failure-free overhead was reduced.
Furthermore, as the proposed algorithm apportioned the
provisioned resources among concurrently executing tasks,
it achieved a significant performance improvement com-
pared with prior studies, especially in situations with less
resources.

Finally, because the simplifying assumption in a pre-
vious study was relaxed in our formulation of the optimal
checkpointing problem, a better performance was achieved
in terms of both time and cost. Our results demonstrated that
both the proposed replication method and CX reduced the
resiliency overhead.

ORCID
Hassan Motallebi https://orcid.org/0000-0001-5769-8532

REFERENCES
	 1.	 F. Cappello, Fault tolerance in petascale/exascale systems:

Current knowledge, challenges and research opportunities, Int. J.
High Perform. Comput. Appl. 23 (2009), 212–226.

	 2.	 D. P. Chandrashekar, Robust and Fault-Tolerant Scheduling for
Scientific Workflows in Cloud Computing Environments, Ph.D. dis-
sertation, Dept. Computing and Inf. Syst., University of Melbourne,
Melbourne, Australia, 2015.

	 3.	 G. Aupy et al., Checkpointing strategies for scheduling computa-
tional workflows, Int. J. Network. Comput. 6 (2016), 2–26.

	 4.	 R. N. Calheiros and R. Buyya, Meeting deadlines of scientific
workflows in public clouds with tasks replication, IEEE Trans.
Parallel Dist. Syst. 25 (2014), 1787–1796.

	 5.	 K. Plankensteiner and R. Prodan, Meeting soft deadlines in sci-
entific workflows using resubmission impact, IEEE Trans. Parallel
Dist. Syst. 23 (2012), 890–901.

	 6.	 M. T. Rahman et al., Check pointing to minimize completion time
for inter-dependent parallel processes on volunteer grids, in Proc.
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (Cartagena,
Colombia), May 16–19, 2016, pp. 331–335.

	 7.	 J. W. Young, A first order approximation to the optimum check
point interval, Commun. ACM 17 (1974), 530–531.

	 8.	 J. T. Daly, A higher order estimate of the optimum checkpoint interval
for restart dumps, Future Gener. Comp. Syst. 22 (2006), 303–312.

	 9.	 M.-S. Bouguerra et al., A flexible checkpoint, restart model in dis-
tributed systems, in Proc. Parallel Process. Appl. Math. (Wroclaw,
Poland), Sept. 13–16 (2009), pp. 206–215.

	10.	 A. Benoit, M. Hakem, and Y. Robert, Fault tolerant scheduling of pre-
cedence task graphs on heterogeneous platforms, in Proc. Int. Symp.
Parallel Distrib. (Miami, FL, USA), Apr. 14–18, 2008, pp. 1–8.

	11.	 H. Topcuoglu, S. Hariri, and M.-Y. Wu, Performance-effective
and low-complexity task scheduling for heterogeneous computing,
IEEE Trans. Parallel Dist. Syst. 13 (2002), 260–274.

	12.	 S. K. Jayadivya, J. S. Nirmala, and M. S. S. Bhanu, Fault tolerant
workflow scheduling based on replication and resubmission of tasks
in cloud computing, Int. J. Comput. Sci. Eng. 4 (2012), 996–1006.

	13.	 R. Sirvent, R. M. Badia, and J. Labarta, Graph-based Task
Replication for Workflow Applications, in Proc. IEEE Int. Conf.

F I G U R E 1 1   Effect of the proposed checkpointing method on
average execution time

Average failure rate ×10
–7

F I G U R E 1 2   Effect of proposed replication and checkpointing
method on relative performance of algorithms

A
v

er
ag

e
ex

ec
u

ti
o

n
 t

im
e

(s
)

×10
8

3.4

3.5

3.6

3.7

3.8

3.9

4.0

EURB + CX

EURB + CNX

RI(*) + CX

RI(*) + CNX

×10
–7

F I G U R E 1 3   Relative performance of algorithms in
environments with Pareto and Weibull time-to-failure distributions

Pareto, N = 250 Pareto, N = 500 Weibull, N = 250 Weibull, N = 500
Failure distribution, application size

0

2

4

6

8

10

12

14

A
v
er

ag
e

ex
ec

u
ti

o
n
 t

im
e

(s
)

10
5

EURB + CX

RI(3) + Rahman

RI(2) + Rahman

https://orcid.org/0000-0001-5769-8532
https://orcid.org/0000-0001-5769-8532

398  |     MOTALLEBI

High Performance Comput. Commun. (Seoul, Rep. of Korea), June
25–27, 2009, pp. 20–28.

	14.	 S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, Deadline con-
strained workflow scheduling algorithms for infrastructure as a
service clouds, Future Gener. Comp. Syst. 29 (2013), 158–169.

	15.	 L. Zhao, Y. Ren, and K. Sakurai, Reliable workflow scheduling with
less resource redundancy, Parallel Comput. 39 (2013), 567–585.

	16.	 M. Wieczorek, R. Prodan, and A. Hoheisel, Taxonomies of the
multi-criteria grid workflow scheduling problem, Institute on
Resource Management and Scheduling, Innsbruck, Austria, Core-
GRID Tech. Rep. TR-0106, Aug. 2007.

	17.	 Y. Zhang et al., Combined fault tolerance and scheduling tech-
niques for workflow applications on computational grids, in Proc.
IEEE/ACM Int. Symp. Clust. Comput. Grid (Shanghai, China),
May 18–21, 2009, pp. 244–251.

	18.	 A. Benoit et al., Combining checkpointing and replication for reliable ex-
ecution of linear workflows, In Proc. IEEE Int. Paallel Distrib. Process.
Symp. Workshops (Vancouver, Canada), May 2018, pp. 793–802.

	19.	 A. Benoit et al., Optimal check- pointing period with replicated
execution on heterogeneous platforms, in Proc. Workshop FTXS@
HPDC (Washington, DC, USA), June 26–27, 2017, pp. 9–16.

	20.	 M. Chtepen et al., Adaptive task checkpointing and replication:
toward efficient fault-tolerant grids, IEEE Trans. Parallel Distrib.
Syst. 20 (2009), 180–190.

	21.	 J. Daly, A model for predicting the optimum checkpoint interval
for restart dumps, in Proc. Int. Conf. Comput. Sci. (Melbourne,
Australia), June 2–4, 2003, pp. 3–12.

	22.	 S. Sadi and B. Yagoubi, Communication-aware approaches for
transparent checkpointing in cloud computing, Scalable Comput.:
Practice Experience 17 (2016), 251–270.

	23.	 M. Bougeret et al., Checkpointing strategies for parallel jobs, in
Proc. Int. conf. Hight Performance Comput. Netw. Storage Anal.
(Seattle, WA, USA), Nov. 12–18, 2011, pp. 1–11.

	24.	 G. Aupy and J. Herrmann, Periodicity in optimal hierarchical
checkpointing schemes for adjoint computations, Optim Methods
Softw. 32, (2017), 594–624.

	25.	 H. Nguyen et al., An execution environment for robust parallel
computing on volunteer PC Grids, in Proc. Int. Conf. Parallel
Process. (Pittsburgh, PA, USA), Sept. 10–13, 2012, pp. 158–167.

	26.	 G. Aupyet al., On the Combination of Silent Error Detection and
Check-pointing, in Proc. IEEE Pacific Rim Int. Symp. Dependable
Comput. (Vancouver, Canada), Dec. 2–4, 2013, pp. 11–20.

	27.	 A. Benoit et al., Two-level check-pointing and verifications for lin-
ear task graphs, in Proc. IEEE Int. Parallel Distrib. Process. Symp.
(Chicago, IL, USA), May 23–27, 2016, pp. 1239–1248.

	28.	 A. Benoit et al., Multi-level check- pointing and silent error detec-
tion for linear workflows, J. Comput. Sci. 28 (2018), 398–415.

	29.	 L. Han et al., A generic approach to scheduling and checkpoint-
ing workflows, in Proc. Int. Conf. Parallel Process. (Eugene, OR,
USA), July 29–Aug. 3, 2018, pp. 1–10.

	30.	 S. Sadi and B. Yagoubi, On the optimum checkpointing interval
selection for variable size checkpoint dumps, in Proc. Int. Conf.
Comput. Sci. Applicat. (Saida, Algeria), May 20–21, 2015, pp.
599–610.

	31.	 G. Juve et al., Characterizing and profiling scientific workflows,
Future Gener. Comput. Syst. 29 (2013), 682–692.

AUTHOR BIOGRAPHY

Hassan Motallebi received his BS de-
gree in software engineering from the
School of Electrical and Computer
Engineering, Isfahan University of
Technology, Isfahan, Iran, in 2005, and
his MS and PhD degrees in software
engineering from the School of
Computer Engineering, Iran University

of Science and Technology, Tehran, Iran, in 2008 and
2013, respectively. Since 2013, he has been with the
Department of Electrical and Computer Engineering,
Graduate University of Advanced Technology, Kerman,
Iran, where he is an Assistant Professor. His research in-
terests include data mining, cloud and grid computing,
performance evaluation of concurrent systems, and Petri-
net–based formalisms.

