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1  |   INTRODUCTION

Research on traffic classification has become more chal-
lenging than ever, as the innovative applications and mech-
anisms to conceal the nature of traffic develop and mature 
rapidly. The accuracy and efficiency of traffic classification 
methods have attracted great research interest from academia 
and industry. For example, encrypted Voice over IP network 
(VoIP) traffic flow needs to be correctly picked out and la-
beled with appropriate transmission priorities—because of 
its time-delay sensitive nature—to preserve the quality of ser-
vice (QoS). Old-fashioned strategies such as packet's header 
and payload inspection failed to discriminate traffic, because 
content checking on encrypted traffic was unsuccessful. 

Some inspiring methods based on the statistical behavior of 
traffic flow have been proposed. Although these methods 
achieved high accuracies in differentiating non-encrypted 
traffic flows, encrypted traffic classification is still in its ini-
tial development.

IP packets transmitted in plaintext can be easily recovered 
by network sniffer tools such as Wireshark. Thus, to ensure 
communication confidentiality, encryption methods must be 
employed, and that is becoming a fast-growing trend.

IPsec virtual private network (VPN), transport layer se-
curity (TLS)/secure socket layer (SSL), and secure real-time 
transport protocol (SRTP) dedicated to encrypted VoIP are 
three major protocols for encrypted network traffic. We se-
lected the IPsec protocol to brief the principles and approaches 
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for traffic encryption. IPsec can be deployed to enable VoIP 
communication confidentiality at the IP network level. Some 
research concluded that a cryptographic engine could bring 
large overhead for voice traffic and was not perfect for VoIP 
encryption. This hot topic is worthy of investigation not only 
for its omnipresence in real-life VoIP scenarios but also for 
its academic value. Widely used in HTTPS Web traffic, TLS/
SSL is undoubtedly one of the most important encryption 
mechanisms for packet transmission, as the NSS lab predicts 
that 75% of global web traffic will be encrypted by 2019.

We investigated and evaluated numerous flow features for 
encrypted traffic classification using four traditional machine 
learning methods—support vector machines (SVM), ran-
dom forest (RF), naïve Bayes, and logistic regression—and 
a neural network (NN). An entropy-based method was used 
to first distinguish encrypted from non-encrypted traffic. For 
encrypted traffic, based on the results from the first phase, we 
designed a NN using three types of packet discriminators—
packet length, inter-arrival time (IAT), and direction (forward 
and backward)—as input-layer parameters. For non-en-
crypted traffic, we employed principal component analysis 
(PCA) to cut dimensions by half to achieve high efficiency of 
classification while maintaining a certain degree of accuracy.

Contributions we made in this study are as follows:

•	 We investigated three network traffic encryption mecha-
nisms to prepare for classification analysis and evaluation.

•	 Four traditional machine learning methods and a neural 
network were evaluated for network traffic classification.

•	 We proposed a combined approach to distinguish the en-
crypted traffic from the plaintext traffic using information 
entropy and a neural network, and we achieved improved 
results.

The remainder of the article is structured as follows. 
Section 2 describes related research. In Section 3, we cover 
our methodology with an emphasis on machine learning 
techniques, features, and datasets. Section 4 presents evalua-
tion methods and results. Section 5 concludes the article and 
discusses future work.

2  |   RELATED WORK

Some research demonstrated the feasibility of inferring the 
encrypted packets without decryption from the information 
leakage or the so-called “side-channel.” Attacks by traffic 
analysis usually materialize at the application or transport/
network level for traditional methods. General traffic anal-
ysis is based on application/traffic flow-level features, such 
as correlation statistics between flows at the transceiver 
ends, which is especially the case for encrypted traffic, 
because the packet content inspection methods fail before 

encryption. VoIP service provider, Skype, protects users’ 
privacy by applying mechanisms such as stronger encryp-
tion, proprietary protocols, unknown codecs, dynamic path 
selection, and the constant packet rate. However, research-
ers have demonstrated how to compromise users’ privacy 
according to a novel traffic analysis attack that extracted 
application-level features from VoIP call traces. In an in-
teresting study, Wright and others [1] suggested that VoIP 
packets compressed with variable bit rate (VBR) encod-
ing schemes and encrypted with a fixed-length cipher were 
susceptible to the attacks of using only the packet length 
feature to infer the spoken language of the encrypted con-
versation. Wright and others [2] showed possibilities of 
spotting the phrases within encrypted VoIP calls under 
specific circumstances. The article proposed profile hidden 
Markov models (pHMM) to model the packet sequences 
for the given phrases. Results indicated an average accu-
racy of 50% (greater than 90% for some phrases).

Traffic features are critical to the identification and clas-
sification of encrypted VoIP traffic for NNs. Anderson and 
others [3] introduced a complex set of observable data fea-
tures and showed that these features could be exercised to 
detect malware communication while preserving the privacy 
of benign users. Wright and others [4] investigated the extent 
to which average application protocols could be differenti-
ated with features such as packet size, timing, and direction 
that remained unchanged after encryption. The accuracy of 
their traffic classifier was greater than 80% for most proto-
cols. Sherry and others [5] inspected the packet directly in 
the encrypted traffic. This article elaborated on the approach 
through an original protocol and encryption scheme.

Sun and others [6] focused on the inference of sensitive 
information from encrypted network connections with packet 
sizes and timing. Liberatore and Levine [7] reported their 
findings of identifying web pages encapsulated in encrypted 
HTTPs using only the number and size of the encrypted pack-
ets. Similarly, Schuster and others [8] proposed a method to 
spot videos played over an encrypted network channel using 
the total size of the packets transmitted in a short-time window. 
Packet inter-arrival times have been studied to infer keystrokes 
within SSH sessions [9]. Entropy estimation for real-time 
encrypted traffic identification [10] presented the approach. 
Results indicated that the encrypted VoIP traffic was detected 
correctly with a precision greater than 94%. Moore and oth-
ers [11] made an impressive contribution by proposing more 
than 200 flow features for further analysis. Velan and others 
[12] compared the feature-based classification methods and 
pointed out their weaknesses and strengths. Daniel and others 
[13] evaluated three machine learning techniques—k-means 
clustering algorithm, MOGA, and C4.5—and concluded that 
C4.5 was the fastest. Nguyen and others [14] surveyed 18 sig-
nificant works published from 2004 to 2007 and categorized 
them according to machine learning algorithms and primary 
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contributions. An inspiring result by Zhang and others [15] was 
that traffic classification performance could still be enhanced 
drastically even with very few training samples. Finamore and 
others [16] proposed KISS, an Internet classification engine, 
which achieved very good results with the average true posi-
tive rate of 99.6% and 98.1% for the worst case.

Traffic encryption has also gained research interest from 
the industry. IEEE industry connections established the 
security subgroup on encrypted traffic inspection (ETI), 
which aims to standardize an accepted way of traffic in-
spection, on top of encrypted transport standards. The group 
also covers requirements for traffic inspection mechanisms 
based on different use cases and explores proofs of concepts 
of implementations. Network giant Cisco's latest network-
ing gear, encrypted traffic analytics (ETA) [17] unleashed in 
2017, provides advanced traffic analytics including machine 
learning to identify encrypted network threats.

3  |   METHODOLOGY

3.1  |  Entropy-based methods

Shannon's entropy theory measures information uncertainty. 
Given m possible events A1, …, Am with probabilities of oc-
currence p1, …, pm, entropy H is defined by (1).

Equal probabilities have the maximum value of entropy. 
Unpredictable behavior means uncertainties and, thus, in-
creases entropy. An appropriate estimator for the entropy is 
needed for small datasets, but entropy estimation based on 
a small sample becomes harder [18], especially for N < m. 
Motivated by the problems of estimating the entropy with 
small length N, Olivain and Goubault-Larrecq [19] presented 
the N-truncated entropy method. The N-truncated entropy 
HN(p) is defined as for words w of length N using a maximum 
likelihood estimator (MLE) to estimate the entropy. Average 
MLE estimates the number of words to formulate HN(p). If 
pi = 1/m for all i (where p follows the uniform distribution U), 
then HN(U) can be computed by (2).

We used MLE as an unbiased estimator of HN. The esti-
mated value of similarity to HN(U) reflects how much it re-
sembled the uniform distribution. A Monte Carlo method for 
estimating HN(U) with corresponding confidence intervals 

works for the empirical evaluation test. Paninski [20] con-
cluded that at least N >

√

m samples were needed for the 
uniformity test. Inspired by the aforementioned methods, we 
propose the following information entropy-based algorithm.

Using the traffic sniffer tool's data processing functional-
ity, we selected randomly 64 bytes in TCP protocol contents 
(TLSv1.2 for encrypted traffic) from the experimental pcap 
files (ISCX-VPN-NonVPN-2016) to compute the entropy. 
We used Monte Carlo pseudorandom sequence to mimic the 
encrypted traffic and compared it with the experiment data. 
See Algorithm 1 in Table 1 for entropy estimation details.

3.2  |  Artificial neural networks

The research demonstrated the efficacy of artificial neural 
networks, especially the deep learning technologies [21], in 
traffic classification. Computational power, such as graphi-
cal processing units (GPUs) and Google's tensor processing 
unit (TPU), grows exponentially, and a deep NNs design and 
training have become more feasible. There are reports that 
NN architectures such as multilayer perceptrons (MLP), con-
volutional neural networks (CNN), recurrent neural networks 
(RNN), autoencoders, and generative adversarial networks 
(GAN) have all been used for traffic classification. In this 
article, we used a traditional NN with three layers (input, hid-
den, and output layer) to evaluate our combined approach.
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T A B L E  1   Algorithm using entropy-based methods

Algorithm 1 Distinguish encrypted traffic from plaintext traffic 
using entropy-based methods

1. Generate Monte Carlo pseudorandom sequence between 0 and 
256 with the length of 64 bytes for 10 000 times; for example, (a3 
b4 f1 23 48 90 ab 34…), where “a3” stands for one character.

2. Using (2) to calculate HN (U), where N = 64, m = 256, and Ni 
stands for the frequency of character i, and HN (U) represents the 
average information entropy using the MLE method.

3. Collect and save the experimental pcap dataset using the sniffer 
tool's functionality.

4. Select randomly 64 bytes protocol contents in 100 TCP flow data 
and store them into 100*64 dataset matrix (test dataset matrix);

5. For every row of the test dataset matrix, calculate information 
entropy for every character using (1), that is Hk(P).

6. Calculate average variance, � =
∑k

i=1
(Hi (p)−Hu (p) )2∕ (k−1),  

determine encryption = true if actual information entropy 
value falls within three times confidence range, otherwise 
encryption = false.
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The NN architecture is shown in Figure 1.
The NN uses modular backpropagation algorithms, linear 

module plus softmax (activation function), and cross-entropy 
(loss function). The basic principle for each module was to 
(i) calculate “forward_pass,” “backward_pass,” and “para_
gradients,” (ii) chain together “forward_pass” and “back-
ward_pass,” (iii) compute “para_gradients,” and (iv) apply 
gradients and iterate. For the NN, online stochastic gradient 
descent (SGD) was used to construct our model. See Table 2 
for the main modular processes.

We proposed a combined approach to distinguish the en-
crypted and plaintext traffic and then to further classify the 
encrypted traffic into eight types of applications. The NN is com-
prised of three layers: the input layer has 23 neurons for 23 traffic 
features, the hidden layer has 100 neurons, and the output layer 
has eight neurons for eight classes (which are VoIP, audio stream-
ing, browsing, chat, email, file transfer, P2P, and video stream-
ing). Figure 2 depicts the high-level workflow of our approach.

3.3  |  Dataset

The dataset from the Canada Institute for Cybersecurity is 
widely used by researchers worldwide. It includes network 

traffic such as IDS, Tor/Non-Tor, VPN/Non-VPN, and an 
Android malware dataset. For this study, we selected two 
relevant traffic datasets, “ISCX-Tor/Non-Tor” and “ISCX 
VPN/Non-VPN.” These two datasets store captured traffic 
packets in the pcap format files, which we can open with 
Wireshark to inspect the packet details. The CSV files are 
traffic flow statistics typically used for supervised learning 
with assigned training labels. For “ISCX VPN-NonVPN” 
datasets, packets are captured over virtual private network 
(VPN) sessions, which are generally considered to be en-
crypted. The “ISCX-Tor/Non-Tor” dataset is generated by 
the Tor browser. The basic principle for Tor is to build en-
crypted connections in a way that no individuals ever know 
the complete path. Complex port obfuscation algorithms also 
improve the privacy and anonymity of Tor traffic. As the 
complete datasets were very huge and diversified, we chose 
the aforementioned two datasets for our experiments. VPN-
NonVPN datasets were used to classify the encrypted and 
non-encrypted traffic, while Tor/Non-Tor was for applica-
tion classification. We separated the training and test sets (no 
validation set) using random sampling. About 2000 packets 
randomly selected from the original dataset were used to feed 
to the NN. The repeat times for the train/test were set to 10. 
The training set size was 90% and 10% was for the test set.

3.4  |  Methods for encrypted and non-
encrypted traffic classification

We investigated correlations between the 23 different sta-
tistic features and the target class. The following figures 
show the density distribution of the features “duration” 
and “total_fiat” with class type (VPN/Non-VPN), respec-
tively. There were two spikes for “duration” of Non-VPN 
and one spike for “total_fiat” of Non-VPN. The differences 
between the two types of distributions were obvious, which 
indicated these two features could be used for classifica-
tion. Figure 3 demonstrates the distribution of the two se-
lected features.

We selected VPN/Non-VPN dataset and studied the dis-
tribution of every feature and class type. The heat map for 
the dataset and box plot for the two chosen statistic features 
(duration, total_fiat) are illustrated in Figure 4.

Heat map represents data in the matrix with changing colors. 
Darker colors mean the larger data. Some features showed they 
might be useful for classification. Box plot depicts the numeric 
data value of “duration” and “total_fiat” through quartiles.

We ranked the top 10 among 23 features using three met-
rics: information gain (IG), Gini decrease, and χ2. IG for a 
specified attribute is defined using Shannon entropy H(T). 
IG(T, a)  =  H(T) –H(T | a) is the difference between the a 
priori Shannon entropy H(T) of the training set and the condi-
tional entropy H(T | a). The mean decrease in Gini coefficient 

F I G U R E  1   (A) Traditional neural network representation and 
(B) neural network computational graph
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measures each variable's contributions to the homogeneity of 
the nodes from scale 0 (homogeneous) to 1 (heterogeneous). 
Chi-squared test calculates the difference between the distri-
bution of plaintext and decrypted ciphertext. A lower value of 
the test means a higher probability of successful decryption. 
Figure 5 illustrates the results of the top 10 rankings.

3.5  |  Methods for application classification

Dataset ISCX-Tor-Non-tor2017 was used for the classification 
of different types of applications. We use eight applications and 
23 features (see Table A1 in Appendix for definitions). The dis-
tribution of application type with frequency and probabilities is 

Modular Processes
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F I G U R E  2   Workflow of the combined approach
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shown as a bar chart and freeviz in Figure 6. Freeviz shows that 
points in the same class are attracted to each other, whereas 
points in different classes repel each other.

We first employed principal component analysis (PCA) 
to preprocess this type of dataset. This method efficiently re-
duces the dimensions while retaining the variance of the data 
and, thus, reduces the sizes of input layer. The dataset con-
tains 23 features. After PCA processing, 10 principal compo-
nents were computed at the variance greater than 98%. We 
selected the top 10 principal components to preserve the data 
variance at 0.984 (Figure 7).

After analyzing 23 features using PCA, we found that half 
of the features could be dropped to improve efficiency while 
preserving accuracy at a variance of 98.4%. Figure 8 demon-
strates the top 10 principal components.

4  |   RESULTS AND DISCUSSION

Numerous machine learning approaches have been proposed 
for traffic classification. Gil and others [22] adopted features 
such as the flow's duration, bps, and inter-arrival time for both 

F I G U R E  3   (A) Distribution for feature “duration” and Class and 
(B) distribution for feature “total_fiat” and Class
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for 23 data features
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directions to characterize the network traffic. They experi-
mented using k-nearest neighbor (kNN) and C4.5 decision tree 
algorithms and achieved approximately 92% and 88% recall, 
respectively, for the VPN-tunneled dataset. Yamansavascilar 

and others [23] selected 111 discriminators for 14 classes of 
applications and achieved an accuracy of 94% with k-NN al-
gorithm. However, in their report, they did not mention the 
specific details of their implementation, and the results need 
to be revalidated by independent third parties to increase their 
credibility.

SVM [24] is used for data classification and regression. 
RF [25] mainly constructs decision trees to achieve the same 
functions as SVM does. Naïve Bayes model [26] is derived 
from applying Bayes’ theorem with strong independence as-
sumptions between the features. Logistic regression models 
the probability of output in terms of input and can be used 
for classification. Aceto and others [27,28] proposed many 
novel approaches to classify mobile applications. In the 
study by G. Aceto et al and others [29], their results showed 
that three anonymity networks (Tor, I2P, and JonDonym) 
can be easily distinguished with an accuracy of 99.99%. 
Taylor [30] studied smartphone apps from the encrypted 
traffic and achieved more than 99% accuracy. Rezaei and 
others [31] presented commonly used deep learning meth-
ods and their applications in traffic classification tasks. 
Lotfollahi and others [32] proposed a “deep packet” scheme 
to identify encrypted traffic and distinguish between VPN 
and non-VPN network traffic. Aceto and others [33] pre-
sented an inspiring contribution to encrypted TC: they used 
several state-of-the-art deep learning techniques to set a 
framework for comparisons and a performance evaluation 
workbench. They concluded that although DL had open is-
sues and pitfalls, it was viable for the traffic classification.

Our method of entropy estimation for encrypted or non-en-
crypted traffic achieved an average accuracy of 98%. Dataset VPN 
stands for encrypted and non-VPN for plaintext (See Table 3).

The test results showed that the RF outperformed the NN by 
a small margin. We consider that this is because the RF param-
eters (such as “fixed random seeds” and hyperparameters) hap-
pened to be well set. NN has also many important parameters 

F I G U R E  6   (A) Freeviz for different application distribution and 
(B) application distribution with frequency (left) and probabilities 
(right)
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to set, and we simply used the combination of ReLU activa-
tion function, Adam solver, regularization alpha = 0.002, and 
maximum 10 000 iterations, and the results were close to RF. 
Because we did not exhaust the combinations of the parameters 

of NN, we could not conclude that RF outperformed the NN 
methods, and it was highly possible that fine-tuning of the pa-
rameters of NN could produce better results.

4.1  |  Encrypted traffic classification

We compared traditional machine learning methods with 
our combined approach for classification using the same 
dataset, NN, and parameters. The following two ROC 
curves (Figure 9) representing the FP rate for “VPN” and 
“Non-VPN,” respectively, demonstrated the traditional ma-
chine learning methods used to distinguish encrypted from 
plaintext traffic. These traffic traces were directly classified 
without using the entropy method.

F I G U R E  9   (A) FP rate for Non-VPN class using traditional 
methods. (B) FP rate for VPN class using traditional methods
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Method AUC F1 Precision Recall

SVM 0.500 0.274 0.657 0.270

Random forest 0.933 0.915 0.916 0.919

Neural network 0.819 0.846 0.858 0.868

Naïve Bayes 0.779 0.768 0.809 0.746

Logistic regression 0.717 0.787 0.792 0.830

F I G U R E  1 0   (A) FP rate for Non-VPN class using our combined 
approach. (B) FP rate for VPN class using our combined approach
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Metrics in Table 4 summarize the two kinds of class type 
results using five different methods with four criteria using 
the traditional approach.

Note that recall (Rc), precision (Pr), and F1 score (F1) 
are important metrics for classification performance. These 
metrics are calculated as (4).

AUC represents the area the ROC curve occupies. The x-
axis stands for the cumulative distribution of the false-alarm 

probability (FP rate) and the y-axis for the cumulative distri-
bution of the detection probability (TP rate). Using our com-
bined approach, we obtained the following results of the ROC 
curve for the two class types (“VPN” and “Non-VPN”). The 
same traffic traces were tested with our combined approach. 
They were first distinguished as encrypted or non-encrypted 
and then further classified if encrypted. Two kinds of class type 
results using our combined approach are summarized in Figure 
10 and Table 5.

To compare the traditional and our combined approach, the 
same parameters as in “cross-validation” were used. We con-
cluded that all five methods’ performances have been improved, 
from 1 percentage point for the naïve Bayes method to 7 percent-
age points for the NN.

4.2  |  Application of traffic classification

As stated in the methodology section, we used Tor/non-Tor 
dataset as plaintext traffic classified by the first stage of the en-
tropy method to classify applications. Results in Table 6 were 
obtained by using traditional machine learning methods, and 
the confusion matrix (Figure 11) was specifically for NNs.

Metrics in Table 7 were for our combined approach, and 
the confusion matrix (Figure 12) was also for the same NN.

(4)

F1=
2TP

2TP+FP+FN
,

Precision=
TP

TP+FP
,

Recall=
TP

TP+FN
.

T A B L E  5   Metrics of our proposed methods

Method AUC F1 Precision Recall

SVM 0.443 0.564 0.714 0.505

Random forest 0.986 0.971 0.971 0.971

Neural network 0.947 0.925 0.929 0.930

Naïve Bayes 0.784 0.769 0.811 0.751

Logistic regression 0.732 0.794 0.807 0.836

TP Rate FP Rate Precision Recall F1 ROC Area Class

0.963 0.040 0.939 0.963 0.951 0.968 VoIP

0.357 0.020 0.385 0.357 0.370 0.672 Audio

0.306 0.050 0.367 0.306 0.333 0.661 Browsing

0.571 0.065 0.500 0.571 0.533 0.803 Chat

0.478 0.023 0.550 0.478 0.512 0.735 Email

0.740 0.041 0.712 0.740 0.725 0.870 FTP

0.500 0.007 0.625 0.500 0.556 0.742 P2P

0.636 0.083 0.636 0.636 0.636 0.813 Video

0.719 0.049 0.713 0.719 0.715 0.855 Weighted Avg.

T A B L E  6   Metrics for different classes 
of applications using traditional methods

F I G U R E  1 1   Matrix for different 
application types using traditional methods
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The criteria of the TP rate, FP rate, precision, and recall 
for classification have been greatly improved, with some met-
rics nearly 30 percentage points up, which proved the effec-
tiveness of our approach in traffic applications.

5  |   CONCLUSIONS

We analyzed the computational complexities for the com-
bined approach. For training a NN, we analyzed the time 
complexity that has three layers with i, j, and k nodes, re-
spectively, with n training examples and m epochs. The 
result was O(mn × (ij  +  jk)). For the SVM problem, the 
computational complexity was on the order of n3 (n is the 
size of the training dataset). RF is an ensemble model of 
decision trees. The time complexity for building one de-
cision tree is O(v  ×  n log(n)), where n is the number of 
records and v is the number of variables. Therefore, for a 
RF with ntree number of trees, the complexity would be 
O(ntree × v × n log(n)). For naïve Bayes, it is O(N × d), 
where N is the number of training examples, and d stands 
for the dimensionality of the features. For logistic regres-
sion, computational complexity with gradient-based opti-
mization is O(f × c × s × e), with f features, c classes, s 
samples, and e epochs. Complexity for entropy estimation 

is at the same scale as naïve Bayes. The overall complexity 
of the combined approach is the maximum of all the afore-
mentioned methods.

Finally, we concluded that our combined approach out-
performed all the other naïve machine learning methods on 
the “ISCX VPN-NonVPN/ISCX-Tor-NonTor-2017” traffic 
dataset in the traffic classification. We envisage that our 
work can be viewed as a fusion of machine learning, es-
pecially deep learning, with traffic classification issues. 
Although deep learning methods for traffic classification 
were proposed and reported with high accuracy, open is-
sues still exist: for example, features or models may be 
non-representative, or the approach may only work for a 
particular dataset. Moreover, our approach has only been 
studied on certain types of traffic. A comprehensive study 
of new encryption protocols, such as TLS 1.3, has not been 
conducted yet.
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TP Rate FP Rate Precision Recall F1 ROC Area Class

0.994 0.004 0.994 0.994 0.994 1.000 VoIP

0.857 0.008 0.800 0.857 0.828 0.997 Audio

0.889 0.013 0.865 0.889 0.877 0.993 Browsing

0.976 0.011 0.911 0.976 0.943 0.997 Chat

0.826 0.000 1.000 0.826 0.905 0.996 Email

0.940 0.003 0.979 0.940 0.959 0.999 File-Transfer

0.800 0.000 1.000 0.800 0.889 0.998 P2P

0.974 0.015 0.938 0.974 0.955 0.995 Video

0.954 0.007 0.956 0.954 0.954 0.998 Weighted Avg.

T A B L E  7   Metrics for different classes 
of applications using our combined methods

F I G U R E  1 2   Matrix for different 
application types using our combined 
approach
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APPENDIX A

T A B L E  A 1   Definitions for ISCX VPN-Non-VPN dataset's 23 features

No Feature Definitions

1 duration Flow transmitting time

2 total_fiat Total inter-arrival time for forward communication

3 total_biat Total inter-arrival time for backward communication

4 min_fiat Minimum packet inter-arrival time for forward communication

5 min_biat Minimum packet inter-arrival time for backward communication

6 max_fiat Maximum packet inter-arrival time for forward communication

7 max_biat Maximum packet inter-arrival time for backward communication

8 mean_fiat Mean of inter-arrival time for forward communication

9 mean_biat Mean of inter-arrival time for backward communication

10 flowPktsPerSecond Flow packets per second, pps

11 flowBytesPerSecond Flow bytes per second, Bps

12 min_flowiat Minimum flow inter-arrival time

13 max_flowiat Maximum flow inter-arrival time

14 mean_flowiat Mean of flow inter-arrival time

15 std_flowiat Standard deviation of flow inter-arrival time

16 min_active Minimum flow active time

17 mean_active Mean of flow active time

18 max_active Maximum of flow active time

19 std_active Standard deviation of flow active time

20 min_idle Minimum flow idle time

21 max_idle Maximum flow idle time

22 mean_idle Mean of flow idle time

23 std_idle Standard deviation of flow idle time


