DOI QR코드

DOI QR Code

Field programmable analog arrays for implementation of generalized nth-order operational transconductance amplifier-C elliptic filters

  • Diab, Maha S. (Department of Electrical Engineering, University of Sharjah) ;
  • Mahmoud, Soliman A. (Department of Electrical Engineering, University of Sharjah)
  • Received : 2020.03.20
  • Accepted : 2020.07.02
  • Published : 2020.08.18

Abstract

This study presents a new architecture for a field programmable analog array (FPAA) for use in low-frequency applications, and a generalized circuit realization method for the implementation of nth-order elliptic filters. The proposed designs of both the FPAA and elliptic filters are based on the operational transconductance amplifier (OTA) used in implementing OTA-C filters for biopotential signal processing. The proposed FPAA architecture has a flexible, expandable structure with direct connections between configurable analog blocks (CABs) that eliminates the use of switches. The generalized elliptic filter circuit realization provides a simplified, direct synthetic method for an OTA-C symmetric balanced structure for even/odd-nth-order low-pass filters (LPFs) and notch filters with minimum number of components, using grounded capacitors. The filters are mapped on the FPAA, and both architectures are validated with simulations in LTspice using 90-nm complementary metal-oxide semiconductor (CMOS) technology. Both proposed FPAA and filters generalized synthetic method achieve simple, flexible, low-power designs for implementation of biopotential signal processing systems.

Keywords

References

  1. E. K. F. Lee and P. Glenn Gulak, A transconductor-based Field Programmable Analog Array, in Proc. IEEE Int. Solid-State Circuits Conf. (San Francisco, CA, USA), Feb. 1995, pp. 198-199.
  2. S. A. Mahmoud and E. A. Soliman, Digitally programmable second generation current conveyor-based FPAA, Int. J. Circuit Theory Appl. 41 (2013), no. 10, 1074-1084. https://doi.org/10.1002/cta.1826
  3. V. C. Gaudet and P. G. Gulak, CMOS implementation of a current conveyor-based field-programmable analog array, in Proc. Asilomar Conf. Signals, Syst. Comput. (Pacific Grove, CA, USA), Nov. 1997, pp. 115-1159.
  4. S. A. Mahmoud and E. A. Soliman, Low voltage current conveyor- based field programmable analog array, J. Circuits, Syst. Comput. 20 (2011), no. 8, 1677-1701. https://doi.org/10.1142/S0218126611008109
  5. C. Premont et al., Current-conveyor based field programmable analog array, in Proc. Midwest Symp. Circuits Syst. (Ames, IA, USA), Aug. 1996, pp. 155-157.
  6. S. Koneru, E. K. F. Lee, and C. Chu, A flexible 2-D switched-capacitor FPAA architecture and its mapping algorithm, in Proc. Midwest Symp. Circuits Syst. (Las Cruces, NM, USA), Aug. 1999, pp. 296-299.
  7. C. A. Looby and C. Lyden, Op-amp based CMOS field-programmable analogue array, IEEE Circuits, Devices Syst. 147 (2000), no. 2, 93-95. https://doi.org/10.1049/ip-cds:20000030
  8. H. Kutuk and S.-M. Steve Kang, Filter design using a new field-programmable analog array (FPAA), Analog Integr. Circ. Sig. Process. 14 (1997), no. 1-2, 81-90. https://doi.org/10.1023/A:1008298811663
  9. E. K. F. Lee and W. L. Hui, A novel switched-capacitor based field-programmable analog array architecture, Field-Programmable Analog Arrays, Springer,1998, pp. 35-50.
  10. A. H. Madian, S. A. Mahmoud, and A. M. Soliman, Field programmable analog array based on CMOS CFOA and its application, in Proc. IEEE Int. Conf. Electron., Circuits Syst. (St. Julien's, Malta), 2008, pp. 1042-1046.
  11. S. A. Mahmoud, Digitally controlled CMOS balanced output transconductor and application to variable gain amplifier and Gm-C filter on field programmable analog array, J. Circuits, Syst. Comput. 14 (2005), no. 4, 667-684. https://doi.org/10.1142/S021812660500257X
  12. B. Ray et al., Design of OTA based field programmable analog array, in Proc. Int. COnf. VLSI Design Wireless Digital Imaging Millennium (Calcutta, India), Jan. 2000, pp. 494-498.
  13. B. Pankiewicz et al., A CMOS Field Programmable Analog Array, in Proc. IEEE Int. Symp. Circuits Syst. (Sydney, Australia), May 2001, pp. 5-8.
  14. B. Pankiewicz et al., A field programmable analog array for CMOS continuous-time OTA-C filter applications, IEEE J. Solid-State Circuits 37 (2002), no. 2, 125-136. https://doi.org/10.1109/4.982418
  15. B. Pankiewicz et al., A field programmable analog array for CMOS continuous-time OTA-C filter applications, IEEE J. Solid-State Circuits 37 (2002), no. 2, 125-136. https://doi.org/10.1109/4.982418
  16. P. E. Hasler and C. M. Twigg. An OTA-based large-scale field programmable analog array (FPAA) for faster on-chip communication and computation, in Proc. IEEE Int. Symp. Circuits Syst. (New Orleans, LA, USA), May 2007, pp. 177-180.
  17. J. K. Fidler, T. Deliyannis, and Y. Sun, Continuous-time active filter design, CRC Press, 1998.
  18. M. S. Diab and S. Mahmoud, Ultra-low power rectangular field programmable analogue arrays for biomedical applications, in Proc. Int. SoC Design Conf. (Jeju, Rep. of Korea), Oct. 2019, pp. 204-205.
  19. M. S. Diab and S. A. Mahmoud, Balanced OTA-C Elliptic Cauer Filters for Biomedical Applications, in Proc. Int. Conf. Telecommun. Signal Process. (Athens, Greece), July 2018, pp. 80-83.
  20. M. S. Diab and S. A. Mahmoud, Elliptic OTA-C Low-pass filters for analog front-end of biosignal detection system, in Proc. Int. SOC Design Conf. (Daegu, Rep. of Korea), Nov. 2018, pp. 103-104.
  21. M. S. Diab and S. A. Mahmoud, A 1.7nw 24 hz variable gain elliptic low pass filter in 90-nm CMOS for biosignal detection, in Proc. IEEE Int. Symp. Circuits Syst. (Sapporo, Japan), May 2019, doi: https://doi.org/10.1109/ISCAS.2019.8702193.
  22. M. S. Diab and S. Mahmoud, A 6nW seventh-order OTA-c band pass filter for continuous wavelet transform, in Proc. Int. SoC Design Conf. (Jeju, Rep. of Korea), Oct. 2019, pp. 196-197.
  23. L. P. Huelsman, Active and Passive Analog Filter Design: An Introduction, McGraw-Hill, 1993.
  24. K. L. Su, Analog filters, Springer Science & Business Media, 2012.
  25. H. G. Dimopoulos, Analog electronic filters: theory, design and synthesis, Springer Science & Business Media, 2011.
  26. L. D. Paarmann, Design and analysis of analog filters: a signal processing perspective, vol. 617, Springer Science & Business Media, 2006.
  27. M. E. Van Valkenburg, Analog filter design, Holt, Rinehart, and Winston, 1982.
  28. A. B. Williams and F. J. Taylor, Electronic filter design handbook, vol. 15, McGraw-Hill, New York, 2006.
  29. M. B. Elamien and S. A. Mahmoud, On the design of highly linear CMOS digitally programmable operational transconductance amplifiers for low and high-frequency applications, Analog Integr. Circ. Sig. Process. 97 (2018), 225-241. https://doi.org/10.1007/s10470-018-1128-2
  30. M. B. Elamien and S. A. Mahmoud, Analysis and design of a highly linear CMOS OTA for portable biomedical applications in 90 nm CMOS, Microelectron. J. 70 (2017), 72-80. https://doi.org/10.1016/j.mejo.2017.10.009
  31. A. A. Alhammadi and S. A. Mahmoud, Fully differential fifth-order dual-notch powerline interference filter oriented to EEG detection system with low pass feature, Microelectron. J. 56 (2016), 122-133. https://doi.org/10.1016/j.mejo.2016.08.014
  32. J. C. Costa and T. C. Pimenta, A CMOS low-power wider band Gm-C notch filter for EEG, in Proc. Int. Conf. Microelectron. (Beirut, Lebanon), Dec. 2017, pp. 1-4.
  33. K. Wang, C. Chang, and M. Onabajo, A fully-differential CMOS low-pass notch filter for biosignal measurement devices with high interference rejection, in Proc. IEEE Int. Midwest Symp. Circuits Syst. (College Station, TX, USA), Aug. 2014, pp. 1041-1044.

Cited by

  1. A programmable gain and bandwidth amplifier based on tunable UGBW rail-to-rail CMOS op-amps suitable for different bio-medical signal detection systems vol.141, 2020, https://doi.org/10.1016/j.aeue.2021.153952