References
- E. K. F. Lee and P. Glenn Gulak, A transconductor-based Field Programmable Analog Array, in Proc. IEEE Int. Solid-State Circuits Conf. (San Francisco, CA, USA), Feb. 1995, pp. 198-199.
- S. A. Mahmoud and E. A. Soliman, Digitally programmable second generation current conveyor-based FPAA, Int. J. Circuit Theory Appl. 41 (2013), no. 10, 1074-1084. https://doi.org/10.1002/cta.1826
- V. C. Gaudet and P. G. Gulak, CMOS implementation of a current conveyor-based field-programmable analog array, in Proc. Asilomar Conf. Signals, Syst. Comput. (Pacific Grove, CA, USA), Nov. 1997, pp. 115-1159.
- S. A. Mahmoud and E. A. Soliman, Low voltage current conveyor- based field programmable analog array, J. Circuits, Syst. Comput. 20 (2011), no. 8, 1677-1701. https://doi.org/10.1142/S0218126611008109
- C. Premont et al., Current-conveyor based field programmable analog array, in Proc. Midwest Symp. Circuits Syst. (Ames, IA, USA), Aug. 1996, pp. 155-157.
- S. Koneru, E. K. F. Lee, and C. Chu, A flexible 2-D switched-capacitor FPAA architecture and its mapping algorithm, in Proc. Midwest Symp. Circuits Syst. (Las Cruces, NM, USA), Aug. 1999, pp. 296-299.
- C. A. Looby and C. Lyden, Op-amp based CMOS field-programmable analogue array, IEEE Circuits, Devices Syst. 147 (2000), no. 2, 93-95. https://doi.org/10.1049/ip-cds:20000030
- H. Kutuk and S.-M. Steve Kang, Filter design using a new field-programmable analog array (FPAA), Analog Integr. Circ. Sig. Process. 14 (1997), no. 1-2, 81-90. https://doi.org/10.1023/A:1008298811663
- E. K. F. Lee and W. L. Hui, A novel switched-capacitor based field-programmable analog array architecture, Field-Programmable Analog Arrays, Springer,1998, pp. 35-50.
- A. H. Madian, S. A. Mahmoud, and A. M. Soliman, Field programmable analog array based on CMOS CFOA and its application, in Proc. IEEE Int. Conf. Electron., Circuits Syst. (St. Julien's, Malta), 2008, pp. 1042-1046.
- S. A. Mahmoud, Digitally controlled CMOS balanced output transconductor and application to variable gain amplifier and Gm-C filter on field programmable analog array, J. Circuits, Syst. Comput. 14 (2005), no. 4, 667-684. https://doi.org/10.1142/S021812660500257X
- B. Ray et al., Design of OTA based field programmable analog array, in Proc. Int. COnf. VLSI Design Wireless Digital Imaging Millennium (Calcutta, India), Jan. 2000, pp. 494-498.
- B. Pankiewicz et al., A CMOS Field Programmable Analog Array, in Proc. IEEE Int. Symp. Circuits Syst. (Sydney, Australia), May 2001, pp. 5-8.
- B. Pankiewicz et al., A field programmable analog array for CMOS continuous-time OTA-C filter applications, IEEE J. Solid-State Circuits 37 (2002), no. 2, 125-136. https://doi.org/10.1109/4.982418
- B. Pankiewicz et al., A field programmable analog array for CMOS continuous-time OTA-C filter applications, IEEE J. Solid-State Circuits 37 (2002), no. 2, 125-136. https://doi.org/10.1109/4.982418
- P. E. Hasler and C. M. Twigg. An OTA-based large-scale field programmable analog array (FPAA) for faster on-chip communication and computation, in Proc. IEEE Int. Symp. Circuits Syst. (New Orleans, LA, USA), May 2007, pp. 177-180.
- J. K. Fidler, T. Deliyannis, and Y. Sun, Continuous-time active filter design, CRC Press, 1998.
- M. S. Diab and S. Mahmoud, Ultra-low power rectangular field programmable analogue arrays for biomedical applications, in Proc. Int. SoC Design Conf. (Jeju, Rep. of Korea), Oct. 2019, pp. 204-205.
- M. S. Diab and S. A. Mahmoud, Balanced OTA-C Elliptic Cauer Filters for Biomedical Applications, in Proc. Int. Conf. Telecommun. Signal Process. (Athens, Greece), July 2018, pp. 80-83.
- M. S. Diab and S. A. Mahmoud, Elliptic OTA-C Low-pass filters for analog front-end of biosignal detection system, in Proc. Int. SOC Design Conf. (Daegu, Rep. of Korea), Nov. 2018, pp. 103-104.
- M. S. Diab and S. A. Mahmoud, A 1.7nw 24 hz variable gain elliptic low pass filter in 90-nm CMOS for biosignal detection, in Proc. IEEE Int. Symp. Circuits Syst. (Sapporo, Japan), May 2019, doi: https://doi.org/10.1109/ISCAS.2019.8702193.
- M. S. Diab and S. Mahmoud, A 6nW seventh-order OTA-c band pass filter for continuous wavelet transform, in Proc. Int. SoC Design Conf. (Jeju, Rep. of Korea), Oct. 2019, pp. 196-197.
- L. P. Huelsman, Active and Passive Analog Filter Design: An Introduction, McGraw-Hill, 1993.
- K. L. Su, Analog filters, Springer Science & Business Media, 2012.
- H. G. Dimopoulos, Analog electronic filters: theory, design and synthesis, Springer Science & Business Media, 2011.
- L. D. Paarmann, Design and analysis of analog filters: a signal processing perspective, vol. 617, Springer Science & Business Media, 2006.
- M. E. Van Valkenburg, Analog filter design, Holt, Rinehart, and Winston, 1982.
- A. B. Williams and F. J. Taylor, Electronic filter design handbook, vol. 15, McGraw-Hill, New York, 2006.
- M. B. Elamien and S. A. Mahmoud, On the design of highly linear CMOS digitally programmable operational transconductance amplifiers for low and high-frequency applications, Analog Integr. Circ. Sig. Process. 97 (2018), 225-241. https://doi.org/10.1007/s10470-018-1128-2
- M. B. Elamien and S. A. Mahmoud, Analysis and design of a highly linear CMOS OTA for portable biomedical applications in 90 nm CMOS, Microelectron. J. 70 (2017), 72-80. https://doi.org/10.1016/j.mejo.2017.10.009
- A. A. Alhammadi and S. A. Mahmoud, Fully differential fifth-order dual-notch powerline interference filter oriented to EEG detection system with low pass feature, Microelectron. J. 56 (2016), 122-133. https://doi.org/10.1016/j.mejo.2016.08.014
- J. C. Costa and T. C. Pimenta, A CMOS low-power wider band Gm-C notch filter for EEG, in Proc. Int. Conf. Microelectron. (Beirut, Lebanon), Dec. 2017, pp. 1-4.
- K. Wang, C. Chang, and M. Onabajo, A fully-differential CMOS low-pass notch filter for biosignal measurement devices with high interference rejection, in Proc. IEEE Int. Midwest Symp. Circuits Syst. (College Station, TX, USA), Aug. 2014, pp. 1041-1044.
Cited by
- A programmable gain and bandwidth amplifier based on tunable UGBW rail-to-rail CMOS op-amps suitable for different bio-medical signal detection systems vol.141, 2020, https://doi.org/10.1016/j.aeue.2021.153952