Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)[(No. NRF-2017R1E1A1A01075263) and IITP (No. 1711103293 and 1711117087)].
References
- A. Einstein, "Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt," Annalen der Physik, vol. 322, no. 6, 1905, pp. 132-148. https://doi.org/10.1002/andp.19053220607
- S. K. Liao et al., "Satellite-relayed intercontinental quantum network," Phys. Rev. Lett., vol. 120, no. 3, 2018, Article no. 030501.
- F. Arute et al., "Quantum supremacy using a programmable superconducting processor," Nature, vol. 574, 2019, pp. 505-510. https://doi.org/10.1038/s41586-019-1666-5
- A. Divochiy et al., "Superconducting nanowire photonnumber-resolving de tec tor at telecommunication wavelengths," Nature Photon,. vol. 2, 2008, pp. 302-306. https://doi.org/10.1038/nphoton.2008.51
- E. Pomarico et al., "Room temperature photon number resolving detector for infared wavelengths," Opt. Express, vol. 18, no. 10, 2010, pp. 10750-10759. https://doi.org/10.1364/OE.18.010750
- B. Calkins et al., "High quantum-efficiency photon-numberresolving detector for photonic on-chip information processing," Opt. Express, vol. 21, 2013, pp. 22657-22670. https://doi.org/10.1364/OE.21.022657
- G. A. Morton, "Photomultiplier for scintillation counting," RCA Rev., vol. 10, 1949, pp. 525-553.
- K. Ekert., "Quantum Cryptography Based on Bell's Theorem," Phys. Rev. Lett., vol. 67, no. 6, 1991, pp. 661-663. https://doi.org/10.1103/PhysRevLett.67.661
- C. H. Nennett et al., "Experimental quantum cryptography," J. Cryptology, vol. 5, no. 3, 1992, pp. 3-28. https://doi.org/10.1007/BF00191318
- C. A. Armiento et al., "Impact ionization in (100)-, (110)-, and (111)-oriented InP avalanche photodiodes," Appl. Phys. Lett., vol. 43, no. 2, 1983, pp. 198-200. https://doi.org/10.1063/1.94279
- S. G. Choi et al., "3-Dimensional LADAR Optical Detector Development in Geiger Mode Operation," Korean J. Optics Photonics, vol. 24, no. 4, 2013, pp. 176-183. https://doi.org/10.3807/KJOP.2013.24.4.176
- S. Cova et al., "Avalanche photodiodes and quenching circuits for single-photon detection," Appli. Opt., vol. 35, no. 12, 1996, pp. 1956-1976. https://doi.org/10.1364/AO.35.001956
- S. Johnson et al., "Analysis of Geiger-mode APD laser radars," Proc. SPIE, vol. 5086, 2003, pp. 359-368.
- G. N. Gol'tsman et al., "Picosecond superconducting singlephoton optical detector," Appl. Phy. Lett., vol. 79, 2001, Article no. 705.
- C. M. Natarajan et al., "Superconducting nanowire singlephoton detectors: physics and applications," Supercond. Sci. Technol. 25, 2012, p. 063001. https://doi.org/10.1088/0953-2048/25/6/063001
- W. H. P. Pernice et al., "High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits," Nature Commun., vol. 3, 2012, Article no. 1325.
- M. K. Akhlaghi et al., "Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation," Nature Commun., vol. 6, 2015, Article no. 8233.
- https://www.picoquant.com/products/category/photoncounting-detectors/pma-hybrid-series-hybrid-photomultiplierdetector-assembly#specification
- https://www.hamamatsu.com/resources/pdf/etd/NIRPMT_APPLI_TPMO1040E.pdf
- https://marketing.idquantique.com/acton/attachment/11868/f-0238/1/-/-/-/-/ID120_Brochure.pdf
- https://marketing.idquantique.com/acton/attachment/11868/f-0234/1/-/-/-/-/ID230_Brochure.pdf
- A. E. Lita et al., "Counting near-infrared single photons with 95% efficiency," Opt. Express, vol. 16, 2008, pp. 3032-3040. https://doi.org/10.1364/OE.16.003032
- https://singlequantum.com/products/single-quantum-eos/
- H. Chun et al., "Handheld free space quantum key distribution with dynamic motion compensation," Opt. Express, vol. 25, 2017, pp. 6784-6795. https://doi.org/10.1364/OE.25.006784
- G. Ribordy et al., "Automated plug & play quantum key distribution," Electron Lett. vol. 34, 1998, pp. 2116-2117. https://doi.org/10.1049/el:19981473
- R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Quantum key distribution over a 48km optical fibre network," J. Mod. Opt., vol. 47, 2000, pp. 533-547. https://doi.org/10.1080/09500340008244058
- D. Stucki et al.,"Quantum key distribution over 67km with a plug&play system," New J. Phys., vol. 4, 2002, Article no. 41.
- C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122km of standard telecom fiber," Appl. Phys. Lett., vol. 84, 2004, Article no. 3762.
- W.-Y. Hwang, "Quantum Key Distribution with High Loss: Toward Global Secure Communication," Phys. Rev. Lett., vol. 91, 2003, Article no. 057901.
- H.-K. Lo, X. Ma, and K. Chen,"Decoy State Quantum Key Distribution," Phys. Rev. Lett., vol. 94, 2005, Article no. 230504.
- C. Z. Peng et al., "Experimental long-distance decoystate quantum key distribution based on polarization encoding," Phys. Rev. Lett., vol. 98, 2007, Article no. 010505.
- N. Namekata et al., "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett., vol. 91, 2007, Article no. 011112.
- Z. L. Yuan et al., "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett., vol. 92, 2008, Article no. 201104.
- L. C. Comandar et al., "Gigahertz-gated InGaAs-InP singlephoton detector with detection efficiency exceeding 55% at 1550nm," J. Appl. Phys., vol. 117, 2015, Article no. 083109.
- Z. Yuan et al., "10-Mb/s quantum key distribution," J. Lightwave Technol., vol. 36, 2018, pp. 3427-3433. https://doi.org/10.1109/JLT.2018.2843136
- C. H. Bennett and G. Brassard, "Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working!," ACM Sigact News, vol. 20, 1989, pp. 78-80. https://doi.org/10.1145/74074.74087
- R. J. Hughes et al., "Practical free-space quantum key distribution over 10km in daylight and at night," New J. Phys., vol. 4, 2002, Article no. 43.
- T. Schmitt-Manderbach et al., "Experimental demonstration of free-space decoy-state quantum key distribution over 144km," Phys. Rev. Lett., vol. 98, 2007, Article no. 010504.
- S. Nauerth et al., "Air-to-ground quantum communication," Nature Photon., vol. 7, 2013, pp. 382-386. https://doi.org/10.1038/nphoton.2013.46
- S.-K. Liao et al., "Satellite-to-ground quantum key distribution," Nature, vol. 549, 2017, pp. 43-47. https://doi.org/10.1038/nature23655
- S.-K. Liao et al., , "Satellite-relayed intercontinental quantum network," Phys. Rev. Lett., vol. 120, 2018, Article no. 030501.
- I. Khan et al., "Satellite-Based QKD," Opt. Photon. News, vol. 29, 2018, pp. 26-33.
- S. Liao et al., "Long-distance free-space quantum key distribution in daylight towards inter-satellite communication," Nature Photon., vol. 11, 2017, pp. 509-513. https://doi.org/10.1038/nphoton.2017.116
- H. Takesue et al., "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photon., vol. 1, no. 6, 2007, pp. 343-348. https://doi.org/10.1038/nphoton.2007.75
- M. Sasaki et al., "Field test of quantum key distribution in the Tokyo QKD Network," Opt. Exp., vol. 19, no. 11, 2011, pp. 10387-10409.
- H. Shibata, T. Honjo, and K. Shimizu, "Quantum key distribution over a 72dB channel loss using ultralow dark count superconducting single-photon detectors," Opt. Lett., vol.39, no.17, 2014, pp. 5078-5081. https://doi.org/10.1364/OL.39.005078
- Y.-L. Tang et al., "Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network," Phys. Rev. X, vol. 6, no. 1, 2016, Article no. 011024.
- M. Lucamarini et al., "Overcoming the rate-distance limit of quantum key distribution without quantum repeaters," Nature, vol. 557, 2018, pp. 400-403. https://doi.org/10.1038/s41586-018-0066-6
- J.-P. Chen et al.,"Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509km," Phys. Rev. Lett., vol. 124, 2020, Article no. 070501.
- G. Reithmaier et al., "On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors," Scientific Reports, vol. 3, 2013, Article no. 1901.
- E. Knillm R, Laflamme, and G. J. Milburn, "A cheme for efficient quantum computation with linear optics," Nature, vol. 409, 2001, pp. 46-52. https://doi.org/10.1038/35051009